Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints
We are interested in the problem of predicting secondary structure for small sets of homologous RNAs, by incorporating limited comparative sequence information into an RNA folding model. The Sankoff algorithm for simultaneous RNA folding and alignment is a basis for approaches to this problem. There...
Saved in:
Published in | BMC bioinformatics Vol. 7; no. 1; p. 400 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
04.09.2006
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We are interested in the problem of predicting secondary structure for small sets of homologous RNAs, by incorporating limited comparative sequence information into an RNA folding model. The Sankoff algorithm for simultaneous RNA folding and alignment is a basis for approaches to this problem. There are two open problems in applying a Sankoff algorithm: development of a good unified scoring system for alignment and folding and development of practical heuristics for dealing with the computational complexity of the algorithm.
We use probabilistic models (pair stochastic context-free grammars, pairSCFGs) as a unifying framework for scoring pairwise alignment and folding. A constrained version of the pairSCFG structural alignment algorithm was developed which assumes knowledge of a few confidently aligned positions (pins). These pins are selected based on the posterior probabilities of a probabilistic pairwise sequence alignment.
Pairwise RNA structural alignment improves on structure prediction accuracy relative to single sequence folding. Constraining on alignment is a straightforward method of reducing the runtime and memory requirements of the algorithm. Five practical implementations of the pairwise Sankoff algorithm - this work (Consan), David Mathews' Dynalign, Ian Holmes' Stemloc, Ivo Hofacker's PMcomp, and Jan Gorodkin's FOLDALIGN - have comparable overall performance with different strengths and weaknesses. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Undefined-3 |
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/1471-2105-7-400 |