Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints

We are interested in the problem of predicting secondary structure for small sets of homologous RNAs, by incorporating limited comparative sequence information into an RNA folding model. The Sankoff algorithm for simultaneous RNA folding and alignment is a basis for approaches to this problem. There...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 7; no. 1; p. 400
Main Authors Dowell, Robin D, Eddy, Sean R
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 04.09.2006
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We are interested in the problem of predicting secondary structure for small sets of homologous RNAs, by incorporating limited comparative sequence information into an RNA folding model. The Sankoff algorithm for simultaneous RNA folding and alignment is a basis for approaches to this problem. There are two open problems in applying a Sankoff algorithm: development of a good unified scoring system for alignment and folding and development of practical heuristics for dealing with the computational complexity of the algorithm. We use probabilistic models (pair stochastic context-free grammars, pairSCFGs) as a unifying framework for scoring pairwise alignment and folding. A constrained version of the pairSCFG structural alignment algorithm was developed which assumes knowledge of a few confidently aligned positions (pins). These pins are selected based on the posterior probabilities of a probabilistic pairwise sequence alignment. Pairwise RNA structural alignment improves on structure prediction accuracy relative to single sequence folding. Constraining on alignment is a straightforward method of reducing the runtime and memory requirements of the algorithm. Five practical implementations of the pairwise Sankoff algorithm - this work (Consan), David Mathews' Dynalign, Ian Holmes' Stemloc, Ivo Hofacker's PMcomp, and Jan Gorodkin's FOLDALIGN - have comparable overall performance with different strengths and weaknesses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Undefined-3
ISSN:1471-2105
1471-2105
DOI:10.1186/1471-2105-7-400