TLR-4 engagement of dendritic cells confers a BST-2/tetherin-mediated restriction of HIV-1 infection to CD4+ T cells across the virological synapse

Dendritic cells and their subsets, located at mucosal surfaces, are among the first immune cells to encounter disseminating pathogens. The cellular restriction factor BST-2/tetherin (also known as CD317 or HM1.24) potently restricts HIV-1 release by retaining viral particles at the cell surface in m...

Full description

Saved in:
Bibliographic Details
Published inRetrovirology Vol. 10; no. 1; p. 6
Main Authors Blanchet, Fabien P, Stalder, Romaine, Czubala, Magdalena, Lehmann, Martin, Rio, Laura, Mangeat, Bastien, Piguet, Vincent
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 11.01.2013
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dendritic cells and their subsets, located at mucosal surfaces, are among the first immune cells to encounter disseminating pathogens. The cellular restriction factor BST-2/tetherin (also known as CD317 or HM1.24) potently restricts HIV-1 release by retaining viral particles at the cell surface in many cell types, including primary cells such as macrophages. However, BST-2/tetherin does not efficiently restrict HIV-1 infection in immature dendritic cells. We now report that BST-2/tetherin expression in myeloid (myDC) and monocyte-derived dendritic cells (DC) can be significantly up-regulated by IFN-α treatment and TLR-4 engagement with LPS. In contrast to HeLa or 293T cells, infectious HIV-1 release in immature DC and IFN-α-matured DC was only modestly affected in the absence of Vpu compared to wild-type viruses. Strikingly, immunofluorescence analysis revealed that BST-2/tetherin was excluded from HIV containing tetraspanin-enriched microdomains (TEMs) in both immature DC and IFN-α-matured DC. In contrast, in LPS-mediated mature DC, BST-2/tetherin exerted a significant restriction in transfer of HIV-1 infection to CD4+ T cells. Additionally, LPS, but not IFN-α stimulation of immature DC, leads to a dramatic redistribution of cellular restriction factors to the TEM as well as at the virological synapse between DC and CD4+ T cells. In conclusion, we demonstrate that TLR-4 engagement in immature DC significantly up-regulates the intrinsic antiviral activity of BST-2/tetherin, during cis-infection of CD4+ T cells across the DC/T cell virological synapse. Manipulating the function and potency of cellular restriction factors such as BST-2/tetherin to HIV-1 infection, has implications in the design of antiviral therapeutic strategies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1742-4690
1742-4690
DOI:10.1186/1742-4690-10-6