Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our...

Full description

Saved in:
Bibliographic Details
Published inBreast cancer research : BCR Vol. 11; no. 5; p. R72
Main Authors Simian, Marina, Bissell, Mina J, Barcellos-Hoff, Mary Helen, Shyamala, Gopalan
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 01.01.2009
National Library of Medicine - MEDLINE Abstracts
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics. We subjected PR-A mice to hormonal treatments and analyzed mammary glands for the presence of hyperplasias and used BrdU incorporation to measure proliferation. Quantitative image analysis was carried out to compare levels of latency-associated peptide and transforming growth factor beta 1 (TGFbeta1) between PR-A and PR-B transgenics. Basement membrane disruption was examined by immunofluorescence and proteolytic activity by zymography. The hyperplastic phenotype of PR-A transgenics is inhibited by ovariectomy, and is reversed by treatment with E + P. Studies using the antiestrogen ICI 182,780 or antiprogestins RU486 or ZK 98,299 show that the increase in proliferation requires signaling through E/estrogen receptor alpha but is not sufficient to give rise to hyperplasias, whereas signaling through P/PR has little impact on proliferation but is essential for the manifestation of hyperplasias. Increased proliferation is correlated with decreased TGFbeta1 activation in the PR-A transgenics. Analysis of basement membrane integrity showed loss of laminin-5, collagen III and collagen IV in mammary glands of PR-A mice, which is restored by ovariectomy. Examination of matrix metalloproteases (MMPs) showed that total levels of MMP-2 correlate with the steady-state levels of PR, and that areas of laminin-5 loss coincide with those of activation of MMP-2 in PR-A transgenics. Activation of MMP-2 is dependent on treatment with E and P in ovariectomized wild-type mice, but is achieved only by treatment with P in PR-A mice. These data establish a link between hormonal response, proliferation, modulation of MMP activity and maintenance of basement membrane integrity that depend on a balance in the expression levels of PR-A and PR-B isoforms. Notably, concomitant increased proliferation, due to inhibition of TGFbeta1 activation, and loss of basement membrane integrity, via increased MMP-2 activity, appear to be prerequisites for the PR-A hyperplastic phenotype.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1465-542X
1465-5411
1465-542X
DOI:10.1186/bcr2408