Functional site prediction selects correct protein models
The prediction of protein structure can be facilitated by the use of constraints based on a knowledge of functional sites. Without this information it is still possible to predict which residues are likely to be part of a functional site and this information can be used to select model structures fr...
Saved in:
Published in | BMC bioinformatics Vol. 9; no. S1; p. S13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
13.02.2008
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The prediction of protein structure can be facilitated by the use of constraints based on a knowledge of functional sites. Without this information it is still possible to predict which residues are likely to be part of a functional site and this information can be used to select model structures from a variety of alternatives that would correspond to a functional protein.
Using a large collection of protein-like decoy models, a score was devised that selected those with predicted functional site residues that formed a cluster. When tested on a variety of small alpha/beta/alpha type proteins, including enzymes and non-enzymes, those that corresponded to the native fold were ranked highly. This performance held also for a selection of larger alpha/beta/alpha proteins that played no part in the development of the method.
The use of predicted site positions provides a useful filter to discriminate native-like protein models from non-native models. The method can be applied to any collection of models and should provide a useful aid to all modelling methods from ab initio to homology based approaches. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/1471-2105-9-S1-S13 |