A state-based, proportional myoelectric control method: online validation and comparison with the clinical state-of-the-art

Background Current clinical myoelectric systems provide unnatural prosthesis control, with limited functionality. In this study, we propose a proportional state-based control method, which allows switching between functions in a more natural and intuitive way than the traditional co-contraction swit...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroengineering and rehabilitation Vol. 11; no. 1; p. 110
Main Authors Jiang, Ning, Lorrain, Thomas, Farina, Dario
Format Journal Article
LanguageEnglish
Published London BioMed Central 10.07.2014
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1743-0003
1743-0003
DOI10.1186/1743-0003-11-110

Cover

Loading…
More Information
Summary:Background Current clinical myoelectric systems provide unnatural prosthesis control, with limited functionality. In this study, we propose a proportional state-based control method, which allows switching between functions in a more natural and intuitive way than the traditional co-contraction switch method. Methods We validated the ability of the proposed system to provide precise control in both position and velocity modes. Two tests were performed with online visual feedback, involving target reaching and direct force control in grasping. The performance of the system was evaluated both on a subject with limb deficiency and in 9 intact-limbed subjects, controlling two degrees of freedom (DoF) of the hand and wrist. Results The system allowed completion of the tasks involving 1-DoF with task completion rate >96% and of those involving 2-DoF with completion rate >91%. When compared with the clinical/industrial state-of-the-art approach and with a classic pattern recognition approach, the proposed method significantly improved the performance in the 2-DoF tasks. The completion rate in grasping force control was >97% on average. Conclusions These results indicate that, using the proposed system, subjects were successfully able to operate two DoFs, and to achieve precise force control in grasping. Thus, the proposed state-based method could be a suitable alternative for commercial myoelectric devices, providing reliable and intuitive control of two DoFs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ISSN:1743-0003
1743-0003
DOI:10.1186/1743-0003-11-110