A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease

Over the past two decades, it has become increasingly apparent that Alzheimer's disease neuropathology is characterized by activated microglia (brain resident macrophages) as well as the classic features of amyloid plaques and neurofibrillary tangles. The intricacy of microglial biology has als...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroinflammation Vol. 9; no. 1; p. 115
Main Authors Stansley, Branden, Post, Jan, Hensley, Kenneth
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 31.05.2012
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Over the past two decades, it has become increasingly apparent that Alzheimer's disease neuropathology is characterized by activated microglia (brain resident macrophages) as well as the classic features of amyloid plaques and neurofibrillary tangles. The intricacy of microglial biology has also become apparent, leading to a heightened research interest in this particular cell type. Over the years a number of different microglial cell culturing techniques have been developed to study either primary mammalian microglia, or immortalized cell lines. Each microglial system has advantages and disadvantages and should be selected for its appropriateness in a particular research context. This review summarizes several of the most common microglial cell culture systems currently being employed in Alzheimer's research including primary microglia; BV2 and N9 retroviral immortalized microglia; human immortalized microglia (HMO6); and spontaneously immortalized rodent microglial lines (EOC lines and HAPI cells). Particularities of cell culture requirements and characteristics of microglial behavior, especially in response to applied inflammogen stimuli, are compared and discussed across these cell types.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1742-2094
1742-2094
DOI:10.1186/1742-2094-9-115