Imbalance in superoxide dismutase/thioredoxin reductase activities in hypercholesterolemic subjects: relationship with low density lipoprotein oxidation

There is a relationship among hypercholesterolemia, oxidative stress and inflammation in the atherogenesis. Thus, the objective of the present study was to assess paraoxonase (PON1), superoxide dismutase (SOD) and thioredoxin reductase (TrxR-1) activities and their relationship with lipids, oxidativ...

Full description

Saved in:
Bibliographic Details
Published inLipids in health and disease Vol. 11; no. 1; p. 79
Main Authors Augusti, Paula Rossini, Ruviaro, Amanda Roggia, Quatrin, Andréia, Somacal, Sabrina, Conterato, Greicy Michelle Marafiga, Vicentini, Juliana Tanara, Duarte, Marta Medeiros Frescura, Emanuelli, Tatiana
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 21.06.2012
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:There is a relationship among hypercholesterolemia, oxidative stress and inflammation in the atherogenesis. Thus, the objective of the present study was to assess paraoxonase (PON1), superoxide dismutase (SOD) and thioredoxin reductase (TrxR-1) activities and their relationship with lipids, oxidative stress and inflammation in subjects with different low density lipoprotein-cholesterol (LDL) levels. Serum lipids, highly sensitive C-reactive protein (hs-CRP), lipid and protein oxidation, oxidized LDL (LDLox) and LDLox autoantibodies (LDLoxAB) levels and enzymes activities were measured in a total of 116 subjects that were divided into the following groups according to their LDL levels: low-LDL group (LDL < 100 mg/dL, n = 23), intermediate-LDL group (LDL 100-160 mg/dL, n = 50) and high-LDL group (LDL > 160 mg/dL, n = 43). The LDLox and hs-CRP levels increased in the high-LDL group (2.7- and 3.7- fold, respectively), whereas the intermediate and high-LDL groups had higher LDLoxAB (2.2- and 3.1-fold) when compared to low-LDL group (p < 0.05). Similarly, SOD activity, the atherogenic index (AI) and protein oxidation were also higher in the intermediate (1.3-, 1.3- and 1.2-fold) and high-LDL (1.6-, 2.3- and 1.6-fold) groups when compared to the low-LDL group (p < 0.05). Lipid oxidation and SOD/TrxR-1 ratio increased only in the high-LDL group (1.3- and 1.6-fold) when compared to the low-LDL group (p < 0.05). The SOD/TrxR-1 ratio was positively correlated to TBARS (r = 0.23, p < 0.05), LDLox (r = 0.18, p < 0.05), LDLoxAB (r = 0.21, p < 0.05), LDL (r = 0.19, p < 0.05) and AI (r = 0.22, p < 0.05). PON1 and TrxR-1 activities were similar among groups. Some oxidative events initiate when LDL levels are clinically acceptable. Moreover, hypercholesterolemic patients have an imbalance in SOD and TrxR-1 activities that is positively associated to LDL oxidation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1476-511X
1476-511X
DOI:10.1186/1476-511X-11-79