Genetic predisposition to fracture non-union: a case control study of a preliminary single nucleotide polymorphisms analysis of the BMP pathway
Despite the known multi-factorial nature of atrophic fracture non-unions, a possible genetic predisposition for the development of this complication after long bone fractures remains unknown. This pilot study aimed to address this issue by performing a preliminary SNP analysis of specific genes know...
Saved in:
Published in | BMC musculoskeletal disorders Vol. 12; no. 1; p. 44 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
10.02.2011
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Despite the known multi-factorial nature of atrophic fracture non-unions, a possible genetic predisposition for the development of this complication after long bone fractures remains unknown. This pilot study aimed to address this issue by performing a preliminary SNP analysis of specific genes known to regulate fracture healing.
A total of fifteen SNPs within four genes of the Bone Morphogenetic Protein (BMP) pathway (BMP-2, BMP-7, NOGGIN and SMAD6) were examined, in 109 randomly selected patients with long bone fractures as a result of motor vehicle accident, fall or direct blow. There were sixty-two patients with atrophic non-union and forty-seven patients (54 fractures) with uneventful fracture union. Overall SNPs frequencies were computed with respect to patient's age, gender, smoking habits, fracture-associated parameters and the use of nonsteroidal anti-inflammatory drugs (NSAIDs), and tested for their association to the impaired bone healing process, using binary logistic regression (STATA 11.1; StataCorp, Texas USA).
Statistical analysis revealed age to be an important covariate in the development of atrophic non-union (p = 0.01, OR 1.05 [per year]), and two specific genotypes (G/G genotype of the rs1372857 SNP, located on NOGGIN and T/T genotype of the rs2053423 SNP, located on SMAD6) to be associated with a greater risk of fracture non-union (p = 0.02, OR 4.56 and p = 0.04, OR 10.27, respectively, after adjustment for age).
This is the first clinical study to investigate the potential existence of genetic susceptibility to fracture non-union. Even though no concrete conclusions can be obtained from this pilot study, our results indicate the existence of a potential genetically predetermined impairment within the BMP signalling cascade, initiated after a fracture and when combined with other risk factors could synergistically increase the susceptibility of a patient to develop non-union. Further research is desirable in order to clarify the genetic component and its role and interaction with other risk factors in the development of atrophic long bone non-union, as simple genetic testing may contribute to the early identification of patients at risk in the future and the on-time intervention at the biologic aspects of bone healing. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1471-2474 1471-2474 |
DOI: | 10.1186/1471-2474-12-44 |