Automatic inference of indexing rules for MEDLINE
Indexing is a crucial step in any information retrieval system. In MEDLINE, a widely used database of the biomedical literature, the indexing process involves the selection of Medical Subject Headings in order to describe the subject matter of articles. The need for automatic tools to assist MEDLINE...
Saved in:
Published in | BMC bioinformatics Vol. 9; no. S11; p. S11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
19.11.2008
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Indexing is a crucial step in any information retrieval system. In MEDLINE, a widely used database of the biomedical literature, the indexing process involves the selection of Medical Subject Headings in order to describe the subject matter of articles. The need for automatic tools to assist MEDLINE indexers in this task is growing with the increasing number of publications being added to MEDLINE.
In this paper, we describe the use and the customization of Inductive Logic Programming (ILP) to infer indexing rules that may be used to produce automatic indexing recommendations for MEDLINE indexers.
Our results show that this original ILP-based approach outperforms manual rules when they exist. In addition, the use of ILP rules also improves the overall performance of the Medical Text Indexer (MTI), a system producing automatic indexing recommendations for MEDLINE.
We expect the sets of ILP rules obtained in this experiment to be integrated into MTI. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SC0014664 USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division |
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/1471-2105-9-S11-S11 |