From covalent bonding to coalescence of metallic nanorods

Growth of metallic nanorods by physical vapor deposition is a common practice, and the origin of their dimensions is a characteristic length scale that depends on the three-dimensional Ehrlich-Schwoebel (3D ES) barrier. For most metals, the 3D ES barrier is large so the characteristic length scale i...

Full description

Saved in:
Bibliographic Details
Published inNanoscale research letters Vol. 6; no. 1; p. 559
Main Authors Lee, Soohwan, Huang, Hanchen
Format Journal Article
LanguageEnglish
Published New York Springer New York 25.10.2011
Springer Nature B.V
BioMed Central Ltd
Springer
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Growth of metallic nanorods by physical vapor deposition is a common practice, and the origin of their dimensions is a characteristic length scale that depends on the three-dimensional Ehrlich-Schwoebel (3D ES) barrier. For most metals, the 3D ES barrier is large so the characteristic length scale is on the order of 200 nm. Using density functional theory-based ab initio calculations, this paper reports that the 3D ES barrier of Al is small, making it infeasible to grow Al nanorods. By analyzing electron density distributions, this paper shows that the small barrier is the result of covalent bonding in Al. Beyond the infeasibility of growing Al nanorods by physical vapor deposition, the results of this paper suggest a new mechanism of controlling the 3D ES barrier and thereby nanorod growth. The modification of local degree of covalent bonding, for example, via the introduction of surfactants, can increase the 3D ES barrier and promote nanorod growth, or decrease the 3D ES barrier and promote thin film growth.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1556-276X
1931-7573
1556-276X
DOI:10.1186/1556-276X-6-559