From Single- to Multi-Target Drugs in Cancer Therapy: When Aspecificity Becomes an Advantage

Targeted therapies by means of compounds that inhibit a specific target molecule represent a new perspective in the treatment of cancer. In contrast to conventional chemotherapy which acts on all dividing cells generating toxic effects and damage of normal tissues, targeted drugs allow to hit, in a...

Full description

Saved in:
Bibliographic Details
Published inCurrent medicinal chemistry Vol. 15; no. 5; pp. 422 - 432
Main Authors PETRELLI, A, GIORDANO, S
Format Journal Article
LanguageEnglish
Published Schiphol Bentham Science Publishers Ltd 01.02.2008
Bentham Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Targeted therapies by means of compounds that inhibit a specific target molecule represent a new perspective in the treatment of cancer. In contrast to conventional chemotherapy which acts on all dividing cells generating toxic effects and damage of normal tissues, targeted drugs allow to hit, in a more specific manner, subpopulations of cells directly involved in tumor progression. Molecules controlling cell proliferation and death, such as Tyrosine Kinase Receptors (RTKs) for growth factors, are among the best targets for this type of therapeutic approach. Two classes of compounds targeting RTKs are currently used in clinical practice: monoclonal antibodies and tyrosine kinase inhibitors. The era of targeted therapy began with the approval of Trastuzumab, a monoclonal antibody against HER2, for treatment of metastatic breast cancer, and Imatinib, a small tyrosine kinase inhibitor targeting BCR-Abl, in Chronic Myeloid Leukemia. Despite the initial enthusiasm for the efficacy of these treatments, clinicians had to face soon the problem of relapse, as almost invariably cancer patients developed drug resistance, often due to the activation of alternative RTKs pathways. In this view, the rationale at the basis of targeting drugs is radically shifting. In the past, the main effort was aimed at developing highly specific inhibitors acting on single RTKs. Now, there is a general agreement that molecules interfering simultaneously with multiple RTKs might be more effective than single target agents. With the recent approval by FDA of Sorafenib and Sunitinib - targeting VEGFR, PDGFR, FLT-3 and c-Kit - a different scenario has been emerging, where a new generation of anti-cancer drugs, able to inhibit more than one pathway, would probably play a major role.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0929-8673
1875-533X
DOI:10.2174/092986708783503212