Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments
Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together. We...
Saved in:
Published in | BMC bioinformatics Vol. 6; no. 1; p. 106 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
25.04.2005
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cluster analyses are used to analyze microarray time-course data for gene discovery and pattern recognition. However, in general, these methods do not take advantage of the fact that time is a continuous variable, and existing clustering methods often group biologically unrelated genes together.
We propose a quadratic regression method for identification of differentially expressed genes and classification of genes based on their temporal expression profiles for non-cyclic short time-course microarray data. This method treats time as a continuous variable, therefore preserves actual time information. We applied this method to a microarray time-course study of gene expression at short time intervals following deafferentation of olfactory receptor neurons. Nine regression patterns have been identified and shown to fit gene expression profiles better than k-means clusters. EASE analysis identified over-represented functional groups in each regression pattern and each k-means cluster, which further demonstrated that the regression method provided more biologically meaningful classifications of gene expression profiles than the k-means clustering method. Comparison with Peddada et al.'s order-restricted inference method showed that our method provides a different perspective on the temporal gene profiles. Reliability study indicates that regression patterns have the highest reliabilities.
Our results demonstrate that the proposed quadratic regression method improves gene discovery and pattern recognition for non-cyclic short time-course microarray data. With a freely accessible Excel macro, investigators can readily apply this method to their microarray data. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1471-2105 1471-2164 1471-2105 1471-2164 |
DOI: | 10.1186/1471-2105-6-106 |