Neuronal guidance molecule netrin-1 attenuates inflammatory cell trafficking during acute experimental colitis

BackgroundInflammatory bowel diseases, encompassing Crohn's disease and ulcerative colitis, are characterised by persistent leucocyte tissue infiltration leading to perpetuation of an inappropriate inflammatory cascade. The neuronal guidance molecule netrin-1 has recently been implicated in the...

Full description

Saved in:
Bibliographic Details
Published inGut Vol. 61; no. 5; pp. 695 - 705
Main Authors Aherne, Carol M, Collins, Colm B, Masterson, Joanne C, Tizzano, Marco, Boyle, Theresa A, Westrich, Joseph A, Parnes, Jason A, Furuta, Glenn T, Rivera-Nieves, Jesús, Eltzschig, Holger K
Format Journal Article
LanguageEnglish
Published London BMJ Publishing Group Ltd and British Society of Gastroenterology 01.05.2012
BMJ Publishing Group
BMJ Publishing Group LTD
BMJ Group
SeriesOriginal article
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:BackgroundInflammatory bowel diseases, encompassing Crohn's disease and ulcerative colitis, are characterised by persistent leucocyte tissue infiltration leading to perpetuation of an inappropriate inflammatory cascade. The neuronal guidance molecule netrin-1 has recently been implicated in the orchestration of leucocyte trafficking during acute inflammation. We therefore hypothesised that netrin-1 could modulate leucocyte infiltration and disease activity in a model of inflammatory bowel disease.DesignDSS-colitis was performed in mice with partial genetic netrin-1 deficiency (Ntn-1+/− mice) or wild-type mice treated with exogenous netrin-1 via osmotic pump to examine the role of endogenous and therapeutically administered netrin-1. These studies were supported by in vitro models of transepithelial migration and intestinal epithelial barrier function.ResultsConsistent with our hypothesis, we observed induction of netrin-1 during intestinal inflammation in vitro or in mice exposed to experimental colitis. Moreover, mice with partial netrin-1 deficiency demonstrated an exacerbated course of DSS-colitis compared to littermate controls, with enhanced weight loss and colonic shortening. Conversely, mice treated with exogenous mouse netrin-1 experienced attenuated disease severity. Importantly, permeability studies and quantitative assessment of apoptosis reveal that netrin-1 signalling events do not alter mucosal permeability or intestinal epithelial cell apoptosis. In vivo studies of leucocyte transmigration demonstrate suppression of neutrophil trafficking as a key function mediated by endogenous or exogenously administered netrin-1. Finally, genetic studies implicate the A2B adenosine receptor in netrin-1-mediated protection during DSS-colitis.ConclusionsThe present study identifies a previously unrecognised role for netrin-1 in attenuating experimental colitis through limitation of neutrophil trafficking.
Bibliography:Original data related to this publication are available upon request.
href:gutjnl-61-695.pdf
PMID:21813473
istex:F8B36056736CD3E88563802F2CE07A7BBF76571C
ark:/67375/NVC-ZB2C0ZDV-9
ArticleID:gutjnl-2011-300012
local:gutjnl;61/5/695
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0017-5749
1468-3288
DOI:10.1136/gutjnl-2011-300012