Expression of the prolactin receptor (tiPRL-R) gene in tilapia Oreochromis niloticus: tissue distribution and cellular localization in osmoregulatory organs
The expression of the prolactin receptor (PRL-R) gene has been investigated in various tissues of tilapia (Oreochromis niloticus) reared in fresh or brackish water. Using a cDNA probe spanning the extracellular domain of the tilapia PRL-R and Northern blot analysis, the presence of tilapia PRL-R mRN...
Saved in:
Published in | Journal of molecular endocrinology Vol. 24; no. 2; pp. 215 - 224 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioScientifica
01.04.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The expression of the prolactin receptor (PRL-R) gene has been investigated in various tissues of tilapia (Oreochromis niloticus) reared in fresh or brackish water. Using a cDNA probe spanning the extracellular domain of the tilapia PRL-R and Northern blot analysis, the presence of tilapia PRL-R mRNA has been confirmed in the osmoregulatory organs and has been detected in other tissues, including the skin, the brain, the reproductive organs, and the two major hematopoietic organs (spleen and head kidney), as well as circulating lymphocytes. These findings suggest a conservation of the physiological processes regulated by prolactin throughout the vertebrates, including immunity and central nervous activity. A non-radioactive in situ hybridization procedure has allowed us to detect the expression of the tilapia PRL-R in the branchial chloride cells and the intestinal mucosal layer of fresh water animals, confirming the direct control exerted by prolactin on the water and ionic exchanges in tilapia. In all the tissues examined one unique PRL-R transcript has been detected with a similar size (3.2 kb) whatever the salinity conditions. Thus, the transcriptional expression of the tilapia PRL-R strongly differs from the complex RNA pattern reported for the higher vertebrates PRL-R and provides an additional argument for the existence of a single PRL-R for both prolactin isoforms in this fish species. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0952-5041 1479-6813 |
DOI: | 10.1677/jme.0.0240215 |