Machine Learning in Healthcare
Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) technology have brought on substantial strides in predicting and identifying health emergencies, disease populations, and disease state and immune response, amongst a few. Although, skepticism remains regarding the practic...
Saved in:
Published in | Current genomics Vol. 22; no. 4; pp. 291 - 300 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United Arab Emirates
Bentham Science Publishers Ltd
16.12.2021
Bentham Science Publishers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) technology have brought on substantial strides in predicting and identifying health emergencies, disease populations, and disease state and immune response, amongst a few. Although, skepticism remains regarding the practical application and interpretation of results from ML-based approaches in healthcare settings, the inclusion of these approaches is increasing at a rapid pace. Here we provide a brief overview of machine learning-based approaches and learning algorithms including supervised, unsupervised, and reinforcement learning along with examples. Second, we discuss the application of ML in several healthcare fields, including radiology, genetics, electronic health records, and neuroimaging. We also briefly discuss the risks and challenges of ML application to healthcare such as system privacy and ethical concerns and provide suggestions for future applications. |
---|---|
AbstractList | Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) technology have brought on substantial strides in predicting and identifying health emergencies, disease populations, and disease state and immune response, amongst a few. Although, skepticism remains regarding the practical application and interpretation of results from ML-based approaches in healthcare settings, the inclusion of these approaches is increasing at a rapid pace. Here we provide a brief overview of machine learning-based approaches and learning algorithms including supervised, unsupervised, and reinforcement learning along with examples. Second, we discuss the application of ML in several healthcare fields, including radiology, genetics, electronic health records, and neuroimaging. We also briefly discuss the risks and challenges of ML application to healthcare such as system privacy and ethical concerns and provide suggestions for future applications. Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) technology have brought on substantial strides in predicting and identifying health emergencies, disease populations, and disease state and immune response, amongst a few. Although, skepticism remains regarding the practical application and interpretation of results from ML-based approaches in healthcare settings, the inclusion of these approaches is increasing at a rapid pace. Here we provide a brief overview of machine learning-based approaches and learning algorithms including supervised, unsupervised, and reinforcement learning along with examples. Second, we discuss the application of ML in several healthcare fields, including radiology, genetics, electronic health records, and neuroimaging. We also briefly discuss the risks and challenges of ML application to healthcare such as system privacy and ethical concerns and provide suggestions for future applications.Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) technology have brought on substantial strides in predicting and identifying health emergencies, disease populations, and disease state and immune response, amongst a few. Although, skepticism remains regarding the practical application and interpretation of results from ML-based approaches in healthcare settings, the inclusion of these approaches is increasing at a rapid pace. Here we provide a brief overview of machine learning-based approaches and learning algorithms including supervised, unsupervised, and reinforcement learning along with examples. Second, we discuss the application of ML in several healthcare fields, including radiology, genetics, electronic health records, and neuroimaging. We also briefly discuss the risks and challenges of ML application to healthcare such as system privacy and ethical concerns and provide suggestions for future applications. |
Author | Suril Gohel Hafsa Habehh |
Author_xml | – sequence: 1 givenname: Hafsa surname: Habehh fullname: Habehh, Hafsa organization: Department of Health Informatics, Rutgers University School of Health Professions, 65 Bergen Street, Newark, NJ 07107, United States – sequence: 2 givenname: Suril orcidid: 0000-0003-2387-5021 surname: Gohel fullname: Gohel, Suril organization: Department of Health Informatics, Rutgers University School of Health Professions, 65 Bergen Street, Newark, NJ 07107, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35273459$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUc2P1CAUJ2aN-6H_wma8eelaaKH0ojEb3TUZ40XPL5S-TlEKFehO9u4fLnXWiZqYyAFeeL8veOfkxHmHhDyn5RWjTf2SVrJlJWsZE0IwWjYlp6yuePuInFHZ8ILXUp7kOuOKFXhKzmP8UpaslE35hJxWnDVVzdszcvlB6dE43GxRBWfcbmPc5haVTaNWAZ-Sx4OyEZ89nBfk87u3n65vi-3Hm_fXb7ZFl61SwTrMuYa277ioO4ZCaolU9FoxKnmXcwyybwYlqi5vSpQNE4NQPe8EVY2g1QV5ddCdl27CXqNLQVmYg5lUuAevDPzZcWaEnb8DKVlePAu8eBAI_tuCMcFkokZrlUO_RGCikg2tK7FCL3_3Opr8-pQMaA8AHXyMAYcjhJawDgD-OYDMff0XV5ukkvFrbGP_S-H7QaHLTx3VFLVBp_GYYUxphv1-D7gE_KoiWtQJtJ_Az-iWYHPtUubCPM6wQxcQVEhGWwQTo_tpDas33Hm7TAiMrY0FoYY4q12-aGn1A1fZvOo |
CitedBy_id | crossref_primary_10_1007_s13198_024_02354_3 crossref_primary_10_1016_j_iswa_2024_200441 crossref_primary_10_1177_03000605231202141 crossref_primary_10_1007_s11517_024_03075_2 crossref_primary_10_1016_j_jointm_2023_10_001 crossref_primary_10_2196_47260 crossref_primary_10_1007_s11257_025_09425_5 crossref_primary_10_3390_healthcare11192687 crossref_primary_10_1007_s43465_024_01189_1 crossref_primary_10_1016_j_forsciint_2024_112260 crossref_primary_10_7759_cureus_46454 crossref_primary_10_1016_j_jpedsurg_2024_162151 crossref_primary_10_1038_s41598_024_83875_6 crossref_primary_10_1016_j_addma_2024_104635 crossref_primary_10_1016_j_arr_2024_102651 crossref_primary_10_3348_kjr_2024_0419 crossref_primary_10_1016_j_heliyon_2024_e34602 crossref_primary_10_3390_jcm11102866 crossref_primary_10_1007_s11886_025_02203_0 crossref_primary_10_1016_j_compbiomed_2024_108394 crossref_primary_10_2174_0126662558297036240527120451 crossref_primary_10_3389_fendo_2024_1468824 crossref_primary_10_62487_qgpcnt08 crossref_primary_10_14336_AD_2024_0328_1 crossref_primary_10_3389_frai_2024_1458508 crossref_primary_10_1002_rcs_70035 crossref_primary_10_3390_info14120640 crossref_primary_10_4018_IJARPHM_318140 crossref_primary_10_1016_j_tifs_2022_08_017 crossref_primary_10_2105_AJPH_2024_307888 crossref_primary_10_1186_s12909_024_05555_3 crossref_primary_10_1016_j_nepr_2023_103735 crossref_primary_10_34133_jbioxresearch_0016 crossref_primary_10_1016_j_mtcomm_2024_110818 crossref_primary_10_3390_electronics13244960 crossref_primary_10_1016_j_glmedi_2024_100157 crossref_primary_10_1016_j_infoh_2024_12_002 crossref_primary_10_1016_j_ins_2024_121582 crossref_primary_10_1080_1061186X_2024_2448711 crossref_primary_10_26636_jtit_2024_4_1815 crossref_primary_10_7759_cureus_69680 crossref_primary_10_1186_s12889_025_21334_1 crossref_primary_10_1080_13658816_2024_2443757 crossref_primary_10_1007_s40745_024_00535_2 crossref_primary_10_3390_jcm13237422 crossref_primary_10_1186_s12911_024_02689_8 crossref_primary_10_1055_a_2415_8408 crossref_primary_10_1016_j_compbiomed_2024_108685 crossref_primary_10_1038_s41598_024_74537_8 crossref_primary_10_1210_clinem_dgac702 crossref_primary_10_1007_s13218_023_00808_7 crossref_primary_10_1016_j_cmpb_2024_108581 crossref_primary_10_1186_s42492_024_00166_7 crossref_primary_10_1155_2024_1174438 crossref_primary_10_3390_bioengineering10101152 crossref_primary_10_47582_jompac_1259507 crossref_primary_10_22141_2224_0586_20_5_2024_1742 crossref_primary_10_3390_life14050557 crossref_primary_10_7240_jeps_1506705 crossref_primary_10_2196_50886 crossref_primary_10_1371_journal_pcbi_1012579 crossref_primary_10_1055_s_0044_1785482 crossref_primary_10_3390_math11102354 crossref_primary_10_1080_17512433_2024_2317963 crossref_primary_10_1186_s13075_025_03541_8 crossref_primary_10_1177_21925682241261342 crossref_primary_10_1038_s41746_024_01367_3 crossref_primary_10_3389_fonc_2024_1420328 crossref_primary_10_12998_wjcc_v12_i18_3644 crossref_primary_10_1177_01455613241258648 crossref_primary_10_3390_biomimetics8070519 crossref_primary_10_1016_j_cptl_2024_102231 crossref_primary_10_3390_metabo15040214 crossref_primary_10_3390_ejihpe14030045 crossref_primary_10_1007_s00415_024_12651_3 crossref_primary_10_3390_life15030424 crossref_primary_10_3390_en18020268 crossref_primary_10_1515_labmed_2023_0037 crossref_primary_10_12998_wjcc_v13_i1_99744 crossref_primary_10_1016_j_ijmedinf_2024_105546 crossref_primary_10_3390_diagnostics15050648 crossref_primary_10_1016_j_imu_2024_101529 crossref_primary_10_1016_j_patol_2024_04_003 crossref_primary_10_3390_computers13070179 crossref_primary_10_2147_CLEP_S443152 crossref_primary_10_3389_fneph_2025_1548776 crossref_primary_10_1016_j_liver_2024_100253 crossref_primary_10_3390_ai6020039 crossref_primary_10_3390_app142210523 crossref_primary_10_1111_andr_13776 crossref_primary_10_7759_cureus_49756 crossref_primary_10_1016_j_compbiomed_2025_110038 crossref_primary_10_3389_fnut_2024_1411363 crossref_primary_10_2196_62853 crossref_primary_10_3390_medicina58111568 crossref_primary_10_1007_s44196_025_00771_1 crossref_primary_10_1186_s12245_025_00861_z crossref_primary_10_13005_bbra_3248 crossref_primary_10_3390_children12020244 crossref_primary_10_33165_rmj_2024_47_4_267918 crossref_primary_10_1007_s12010_023_04734_0 crossref_primary_10_1016_j_cmpb_2024_108323 crossref_primary_10_3390_urbansci9010015 crossref_primary_10_1007_s11899_023_00716_5 crossref_primary_10_3390_electronics13224405 crossref_primary_10_47671_TVG_79_23_088 crossref_primary_10_1007_s00405_024_08512_4 crossref_primary_10_1016_j_tifs_2022_10_010 crossref_primary_10_1016_j_procs_2024_10_324 crossref_primary_10_1016_j_scrs_2024_101060 crossref_primary_10_37914_riis_v7i1_359 crossref_primary_10_1016_j_soncn_2023_151433 crossref_primary_10_5406_21521123_62_1_03 crossref_primary_10_2196_64349 crossref_primary_10_2139_ssrn_4720031 crossref_primary_10_2196_59792 crossref_primary_10_1186_s40537_024_01042_0 crossref_primary_10_3390_make6030080 crossref_primary_10_3389_fcvm_2024_1466344 crossref_primary_10_3138_canlivj_2024_0060 crossref_primary_10_3390_jpm13050801 crossref_primary_10_1002_alz_14319 crossref_primary_10_1007_s11082_023_05798_2 crossref_primary_10_1016_j_ijmedinf_2024_105766 crossref_primary_10_1016_j_matpr_2021_11_417 crossref_primary_10_3390_bioengineering11111145 crossref_primary_10_4103_jpbs_jpbs_1528_24 crossref_primary_10_1111_inm_70003 crossref_primary_10_2147_JMDH_S459946 crossref_primary_10_1038_s41598_024_77565_6 crossref_primary_10_1016_j_xjon_2024_06_001 crossref_primary_10_3390_diagnostics14050484 crossref_primary_10_1371_journal_pone_0303644 crossref_primary_10_1016_j_prosdent_2024_10_036 crossref_primary_10_2196_59660 crossref_primary_10_2174_011573398X283365240208195944 crossref_primary_10_1016_j_jseint_2024_11_020 crossref_primary_10_1016_j_psychres_2024_116277 crossref_primary_10_3390_biomedinformatics2030032 crossref_primary_10_1007_s11831_025_10268_x crossref_primary_10_1007_s00238_025_02271_z crossref_primary_10_1007_s11906_024_01297_1 crossref_primary_10_1007_s00406_023_01748_x crossref_primary_10_1186_s13195_023_01304_8 crossref_primary_10_1186_s13040_024_00414_9 crossref_primary_10_2147_POR_S466505 crossref_primary_10_1186_s12911_024_02649_2 crossref_primary_10_3390_info15110695 crossref_primary_10_1002_ksa_12460 crossref_primary_10_1109_ACCESS_2024_3411774 crossref_primary_10_1109_TNSRE_2024_3468995 crossref_primary_10_1016_j_ceh_2024_12_003 crossref_primary_10_7759_cureus_74574 crossref_primary_10_1007_s12672_025_02031_2 crossref_primary_10_1016_j_jocn_2024_110853 crossref_primary_10_1016_j_jad_2022_12_117 crossref_primary_10_1016_j_ijmedinf_2023_105163 crossref_primary_10_1016_j_jvs_2023_05_024 crossref_primary_10_56294_mw20229 crossref_primary_10_1016_j_heliyon_2024_e34476 crossref_primary_10_1111_nin_12651 crossref_primary_10_3390_make7010013 crossref_primary_10_5812_healthscope_143897 crossref_primary_10_1080_07350015_2024_2316102 crossref_primary_10_1080_23279095_2024_2382823 crossref_primary_10_3390_healthcare12242527 |
ContentType | Journal Article |
Copyright | 2021 Bentham Science Publishers. 2021 Bentham Science Publishers 2021 |
Copyright_xml | – notice: 2021 Bentham Science Publishers. – notice: 2021 Bentham Science Publishers 2021 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.2174/1389202922666210705124359 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-5488 |
EndPage | 300 |
ExternalDocumentID | PMC8822225 35273459 10_2174_1389202922666210705124359 http_www_eurekaselect_com_openurl_content_php_genre_article_issn_1389_2029_volume_22_issue_4_spage_291 |
Genre | Journal Article Review |
GroupedDBID | --- .5. 0R~ 29F 2WC 4.4 53G 5GY AAEGP ABEEF ABJNI ACGFS ACIWK ACPRK ADBBV AENEX AFRAH AFUQM AGJNZ ALMA_UNASSIGNED_HOLDINGS ANTIV AOIJS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P GH2 GX1 HYE HZ~ IPNFZ KCGFV O9- OK1 P2P RIG RPM TR2 AAYXX AFHZU CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-b548t-2be174f9db564b2e68c8e16dca2185b138f8d7fa63bfa6a60726f6ad5b61a7613 |
ISSN | 1389-2029 |
IngestDate | Thu Aug 21 13:52:27 EDT 2025 Fri Jul 11 15:21:21 EDT 2025 Mon Jul 21 05:45:58 EDT 2025 Tue Jul 01 02:59:07 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Aug 27 15:46:32 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | genomics support vector machine EHR artificial intelligence Machine learning healthcare |
Language | English |
License | 2021 Bentham Science Publishers. This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b548t-2be174f9db564b2e68c8e16dca2185b138f8d7fa63bfa6a60726f6ad5b61a7613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2387-5021 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8822225 |
PMID | 35273459 |
PQID | 2638714365 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8822225 proquest_miscellaneous_2638714365 pubmed_primary_35273459 crossref_primary_10_2174_1389202922666210705124359 crossref_citationtrail_10_2174_1389202922666210705124359 benthamscience_primary_http_www_eurekaselect_com_openurl_content_php_genre_article_issn_1389_2029_volume_22_issue_4_spage_291 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211216 |
PublicationDateYYYYMMDD | 2021-12-16 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211216 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United Arab Emirates |
PublicationPlace_xml | – name: United Arab Emirates |
PublicationTitle | Current genomics |
PublicationTitleAlternate | CG |
PublicationYear | 2021 |
Publisher | Bentham Science Publishers Ltd Bentham Science Publishers |
Publisher_xml | – name: Bentham Science Publishers Ltd – name: Bentham Science Publishers |
SSID | ssj0020870 |
Score | 2.6255064 |
SecondaryResourceType | review_article |
Snippet | Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) technology have brought on substantial strides in predicting and identifying... |
SourceID | pubmedcentral proquest pubmed crossref benthamscience |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 291 |
Title | Machine Learning in Healthcare |
URI | http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-2029&volume=22&issue=4&spage=291 https://www.ncbi.nlm.nih.gov/pubmed/35273459 https://www.proquest.com/docview/2638714365 https://pubmed.ncbi.nlm.nih.gov/PMC8822225 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgEQgkEG_KY5WVuAYSJ3HcI0K7VGhZDrRSbyM7dpTVsmnVhyqQ-O_MOE6aLqxUuFhR2tiJv8nkG3sejL1FjixNlttQRTYK0zIxeBTbUGZlrOMyKSLjvHzPxGiSfp5m0216ARddstLvip9_jSv5H1TxHOJKUbL_gGzXKZ7AY8QXW0QY270w_uI8IW2bJNUFp4w6h64-72zTMFFK1sueg_tIaVu5lZWRKpediv40q5rd-2_rhffB8CsDPCYviyZw0SuzhDyYIr-i4LUd5z1U077qaqpmXVWpZLKQdY99UVfI1oRAMzHHl5kj1RpuvyPt3vnZVziZnJ7C-Hg6vsluceTvLgp72vne8EjmTfi2v8E77MgP9f7age6x-xonqlKXnhvsMok_zIOrXq492jB-yB54vh98aMB7xG7Y-jG73VQA_fGEHXoIgxbC4LwOthA-ZZOT4_HHUehLVoQaTb9VyLXFhyiHRmci1dwKWUgbC1MopFKZxocrpclLJRKNjRJRzkUplMm0iFWO1OoZO6hntX3BAmFlXAyRUllkYHk8lGVmikKa1JrIqFQO2K_d-YB5k5_ERWrBZrMBu17YC7V0BZUAxRx8RTagMAgq4jyv5uBkGLwMAwkOEAZAIEAjNMA5OIGBFJywAArLgMl2-qHw-eSprMl3QLuSoIRroRww3l3a3vQeFx21GAOqQNrXUrWdrZfA8RuSI-8X2YA9bzDvuk0owWBKV-c70tD9gdKr7_5Sn1cuzbok7syzl3uM-4rd3b6Ar9nBarG2b5CsrvShE_zf1w2SMA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+in+Healthcare&rft.jtitle=Current+genomics&rft.au=Habehh%2C+Hafsa&rft.au=Gohel%2C+Suril&rft.date=2021-12-16&rft.issn=1389-2029&rft.volume=22&rft.issue=4&rft.spage=291&rft_id=info:doi/10.2174%2F1389202922666210705124359&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon |