The 'GO' system--a novel method of microculture for in vitro development of mouse zygotes to the blastocyst stage

A novel system of in vitro culture termed the 'glass oviduct' or 'GO' culture system is described. Mouse zygotes were cultured in pairs to the blastocyst stage in open-ended 1 microl glass capillaries. 'GO' culture supported the development of significantly more hatchin...

Full description

Saved in:
Bibliographic Details
Published inReproduction (Cambridge, England) Vol. 126; no. 2; pp. 161 - 169
Main Authors Thouas, GA, Jones, GM, Trounson, AO
Format Journal Article
LanguageEnglish
Published Colchester Society for Reproduction and Fertility 01.08.2003
Portland
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel system of in vitro culture termed the 'glass oviduct' or 'GO' culture system is described. Mouse zygotes were cultured in pairs to the blastocyst stage in open-ended 1 microl glass capillaries. 'GO' culture supported the development of significantly more hatching or hatched blastocysts than did a standard microdroplet (10 zygotes per 20 microl) control culture (48.3 versus 3.3%, respectively). 'GO' bslastocysts contained significantly larger populations of cells (92+/-3 versus 75+/-3), and inner cell mass (25+/-1 versus 21+/-1) and trophectoderm (68+/-2 versus 53+/-3) subpopulations, compared with microdroplet-derived blastocysts. Before blastulation, 'GO'-derived morulae were found to contain significantly more cells than microdroplet-derived morulae (27+/-0.7 versus 14+/-0.5). After implantation, 'GO' blastocysts formed fetuses at a similar rate to microdroplet-derived blastocysts (55 versus 62%), but at a lower rate than blastocysts derived in vivo (80%). 'GO'- and microdroplet-derived fetuses were similar in wet weight to each other (0.412 and 0.415 g, respectively) but were heavier than fetuses derived from flushed blastocysts (0.390 g). An additional experiment investigated whether the beneficial effect of 'GO' culture was due to the significantly increased embryo density. Proportions of hatching or hatched blastocysts after 'GO' culture (50%) were higher than after standard microdroplet culture (7.6%), but were not different from culture in high embryo density microdroplets (20 zygotes per 10 microl; 42%). 'GO' blastocysts contained more cells (79.6+/-2.1) than did standard microdroplet-derived blastocysts (68.7+/-2.0), but were similar to high density microdroplet-derived blastocysts (85.8+/-2.7). Similarly, 'GO' blastocysts contained more trophectoderm cells (62.2+/-2.0) than did standard microdroplet-derived blastocysts (52.7+/-1.7), but were similar to the high density microdroplet blastocysts (68.8+/-2.5). Numbers of inner cell mass cells ('GO', standard microdroplet and high density microdroplet culture) were not different from each other (17.4+/-0.5, 16+/-0.5 and 17+/-0.4, respectively). In conclusion, the 'GO' culture system represents an alternative method to the microdroplet system for small numbers of preimplantation embryos, without detriment to implantation potential.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1470-1626
1741-7899
DOI:10.1530/rep.0.1260161