A new plasmid vector for DNA delivery using lactococci

The use of food-grade lactococci as bacterial carriers to DNA delivery into epithelial cells is a new strategy to develop live oral DNA vaccine. Our goal was to develop a new plasmid, named pValac, for antigen delivery for use in lactococci. The pValac plasmid was constructed by the fusion of: i) a...

Full description

Saved in:
Bibliographic Details
Published inGenetic vaccines and therapy Vol. 7; no. 4; p. 4
Main Authors Guimarães, Valeria, Innocentin, Sylvia, Chatel, Jean-Marc, Lefèvre, François, Langella, Philippe, Azevedo, Vasco, Miyoshi, Anderson
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 10.02.2009
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The use of food-grade lactococci as bacterial carriers to DNA delivery into epithelial cells is a new strategy to develop live oral DNA vaccine. Our goal was to develop a new plasmid, named pValac, for antigen delivery for use in lactococci. The pValac plasmid was constructed by the fusion of: i) a eukaryotic region, allowing the cloning of an antigen of interest under the control of the pCMV eukaryotic promoter to be expressed by a host cell and ii) a prokaryotic region allowing replication and selection of bacteria. In order to evaluate pValac functionality, the gfp ORF was cloned into pValac (pValac:gfp) and was analysed by transfection in PK15 cells. The applicability of pValac was demonstrated by invasiveness assays of Lactococcus lactis inlA+ strains harbouring pValac:gfp into Caco-2 cells. After transfection with pValac:gfp, we observed GFP expression in PK15 cells. L. lactis inlA+ were able to invade Caco-2 cells and delivered a functional expression cassette (pCMV:gfp) into epithelial cells. We showed the potential of an invasive L. lactis harbouring pValac to DNA delivery and subsequent triggering DNA expression by epithelial cells. Further work will be to examine whether these strains are able to deliver DNA in intestinal cells in vivo.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1479-0556
1479-0556
DOI:10.1186/1479-0556-7-4