Choline-Containing Phospholipids: Structure-Activity Relationships Versus Therapeutic Applications

Choline is a quaternary ammonium salt, and being an essential component of different membrane phospholipids (PLs) contributes to the structural integrity of cell membranes. Choline-containing phospholipids (CCPLs) include phosphatidylcholine (PC), sphingomyelin (SM), and choline alphoscerate (GPC)....

Full description

Saved in:
Bibliographic Details
Published inCurrent medicinal chemistry Vol. 22; no. 38; p. 4328
Main Authors Tayebati, S K, Marucci, G, Santinelli, C, Buccioni, M, Amenta, F
Format Journal Article
LanguageEnglish
Published United Arab Emirates 01.01.2015
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Choline is a quaternary ammonium salt, and being an essential component of different membrane phospholipids (PLs) contributes to the structural integrity of cell membranes. Choline-containing phospholipids (CCPLs) include phosphatidylcholine (PC), sphingomyelin (SM), and choline alphoscerate (GPC). PC is the major phospholipid in most eukaryotic cells. It is involved in SM synthesis, choline/choline metabolite re-generation, and fatty acid/GPC formation. This paper has reviewed chemical, biological and therapeutic features of CCPLs by analyzing: a) effects of exogenous CCPLs, b) influence of GPC treatment on brain cholinergic neurotransmission, and c) neuroprotective effects of GPC alone or in association with acetylcholinesterase inhibitors in animal models of brain vascular injury, d) synthesis of the choline analogs, containing a short alkyl chain instead of a methyl group. Cytidine-diphosphocholine and GPC, protect cell membranes and could be helpful in the sequelae of cerebrovascular accident treatment. Moreover, cellular membrane breakdown is suggested as a feature of neurodegeneration both in acute (stroke) and in chronic (Alzheimer and vascular dementia) brain disorders. Published data were focused to a larger extent on the biosynthesis, relevant role in cell life, and crucial involvement of CCPLs in cholinergic neurotransmission. The possibility of their use in the treatment of cerebrovascular and neurodegenerative disorders is suggested by published clinical studies. In line with these potential practical applications in pharmacotherapy, the need of further research in the field of the synthesis of new choline derivatives with possible activity in nervous system diseases characterized by cholinergic impairment is discussed.
ISSN:1875-533X
DOI:10.2174/0929867322666151029104152