Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline
To model and thoroughly understand animal transcription networks, it is essential to derive accurate spatial and temporal descriptions of developing gene expression patterns with cellular resolution. Here we describe a suite of methods that provide the first quantitative three-dimensional descriptio...
Saved in:
Published in | Genome biology Vol. 7; no. 12; p. R123 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
01.01.2006
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To model and thoroughly understand animal transcription networks, it is essential to derive accurate spatial and temporal descriptions of developing gene expression patterns with cellular resolution.
Here we describe a suite of methods that provide the first quantitative three-dimensional description of gene expression and morphology at cellular resolution in whole embryos. A database containing information derived from 1,282 embryos is released that describes the mRNA expression of 22 genes at multiple time points in the Drosophila blastoderm. We demonstrate that our methods are sufficiently accurate to detect previously undescribed features of morphology and gene expression. The cellular blastoderm is shown to have an intricate morphology of nuclear density patterns and apical/basal displacements that correlate with later well-known morphological features. Pair rule gene expression stripes, generally considered to specify patterning only along the anterior/posterior body axis, are shown to have complex changes in stripe location, stripe curvature, and expression level along the dorsal/ventral axis. Pair rule genes are also found to not always maintain the same register to each other.
The application of these quantitative methods to other developmental systems will likely reveal many other previously unknown features and provide a more rigorous understanding of developmental regulatory networks. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Academy of Finland AC02-05CH11231; 75044; GM704403 National Human Genome Research Institute (NHGRI) National Institute of General Medical Sciences (NIGMS) USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ISSN: | 1465-6906 1474-760X 1465-6914 |
DOI: | 10.1186/gb-2006-7-12-r123 |