Selecting effective siRNA sequences by using radial basis function network and decision tree learning

Although short interfering RNA (siRNA) has been widely used for studying gene functions in mammalian cells, its gene silencing efficacy varies markedly and there are only a few consistencies among the recently reported design rules/guidelines for selecting siRNA sequences effective for mammalian gen...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 7 Suppl 5; no. S5; p. S22
Main Authors Takasaki, Shigeru, Kawamura, Yoshihiro, Konagaya, Akihiko
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 18.12.2006
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although short interfering RNA (siRNA) has been widely used for studying gene functions in mammalian cells, its gene silencing efficacy varies markedly and there are only a few consistencies among the recently reported design rules/guidelines for selecting siRNA sequences effective for mammalian genes. Another shortcoming of the previously reported methods is that they cannot estimate the probability that a candidate sequence will silence the target gene. We propose two prediction methods for selecting effective siRNA target sequences from many possible candidate sequences, one based on the supervised learning of a radial basis function (RBF) network and other based on decision tree learning. They are quite different from the previous score-based siRNA design techniques and can predict the probability that a candidate siRNA sequence will be effective. The proposed methods were evaluated by applying them to recently reported effective and ineffective siRNA sequences for various genes (15 genes, 196 siRNA sequences). We also propose the combined prediction method of the RBF network and decision tree learning. As the average prediction probabilities of gene silencing for the effective and ineffective siRNA sequences of the reported genes by the proposed three methods were respectively 65% and 32%, 56.6% and 38.1%, and 68.5% and 28.1%, the methods imply high estimation accuracy for selecting candidate siRNA sequences. New prediction methods were presented for selecting effective siRNA sequences. As the proposed methods indicated high estimation accuracy for selecting candidate siRNA sequences, they would be useful for many other genes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/1471-2105-7-S5-S22