Joint DOD/DOA estimation in MIMO radar exploiting time-frequency signal representations

In this article, we consider the joint estimation of direction-of-departure (DOD) and direction-of-arrival (DOA) information of maneuvering targets in a bistatic multiple-input multiple-output (MIMO) radar system that exploits spatial time-frequency distribution (STFD). STFD has been found useful in...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on advances in signal processing Vol. 2012; no. 1; pp. 1 - 10
Main Authors Zhang, Yimin D., Amin, Moeness G., Himed, Braham
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 08.05.2012
BioMed Central Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we consider the joint estimation of direction-of-departure (DOD) and direction-of-arrival (DOA) information of maneuvering targets in a bistatic multiple-input multiple-output (MIMO) radar system that exploits spatial time-frequency distribution (STFD). STFD has been found useful in solving various array processing problems, such as direction finding and blind source separation, where nonstationary signals with time-varying spectral characteristics are encountered. The STFD approach to array processing has been primarily limited to conventional problems for passive radar platform that deals with signal arrivals, while its use in a MIMO radar configuration has received much less attention. This paper examines the use of STFD in MIMO radar systems with application to direction finding of moving targets with nonstationary signatures. Within this framework, we consider the use of joint transmit and receive apertures for the improved estimation of both target time-varying Doppler signatures and joint DOD/DOA. It is demonstrated that the STFD is an effective tool in MIMO radar processing when moving targets produce Doppler signatures that are highly localized in the time-frequency domain.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1687-6180
1687-6172
1687-6180
DOI:10.1186/1687-6180-2012-102