A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires

In this paper, a silicon-oxide-nitride-silicon nonvolatile memory constructed on an n + -poly-Si nanowire [NW] structure featuring a junctionless [JL] configuration is presented. The JL structure is fulfilled by employing only one in situ heavily phosphorous-doped poly-Si layer to simultaneously ser...

Full description

Saved in:
Bibliographic Details
Published inNanoscale research letters Vol. 7; no. 1; p. 162
Main Authors Su, Chun-Jung, Su, Tuan-Kai, Tsai, Tzu-I, Lin, Horng-Chih, Huang, Tiao-Yuan
Format Journal Article
LanguageEnglish
Published New York Springer New York 29.02.2012
BioMed Central Ltd
Springer
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a silicon-oxide-nitride-silicon nonvolatile memory constructed on an n + -poly-Si nanowire [NW] structure featuring a junctionless [JL] configuration is presented. The JL structure is fulfilled by employing only one in situ heavily phosphorous-doped poly-Si layer to simultaneously serve as source/drain regions and NW channels, thus greatly simplifying the manufacturing process and alleviating the requirement of precise control of the doping profile. Owing to the higher carrier concentration in the channel, the developed JL NW device exhibits significantly enhanced programming speed and larger memory window than its counterpart with conventional undoped-NW-channel. Moreover, it also displays acceptable erase and data retention properties. Hence, the desirable memory characteristics along with the much simplified fabrication process make the JL NW memory structure a promising candidate for future system-on-panel and three-dimensional ultrahigh density memory applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1556-276X
1931-7573
1556-276X
DOI:10.1186/1556-276X-7-162