Differences in globus pallidus neuronal firing rates and patterns relate to different disease biology in children with dystonia

BackgroundThe pathophysiology underlying different types of dystonia is not yet understood. We report microelectrode data from the globus pallidus interna (GPi) and globus pallidus externa (GPe) in children undergoing deep brain stimulation (DBS) for dystonia and investigate whether GPi and GPe firi...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurology, neurosurgery and psychiatry Vol. 87; no. 9; pp. 958 - 967
Main Authors McClelland, V M, Valentin, A, Rey, H G, Lumsden, D E, Elze, M C, Selway, R, Alarcon, G, Lin, J-P
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group LTD 01.09.2016
BMJ Publishing Group
SeriesResearch paper
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:BackgroundThe pathophysiology underlying different types of dystonia is not yet understood. We report microelectrode data from the globus pallidus interna (GPi) and globus pallidus externa (GPe) in children undergoing deep brain stimulation (DBS) for dystonia and investigate whether GPi and GPe firing rates differ between dystonia types.MethodsSingle pass microelectrode data were obtained to guide electrode position in 44 children (3.3–18.1 years, median 10.7) with the following dystonia types: 14 primary, 22 secondary Static and 8 progressive secondary to neuronal brain iron accumulation (NBIA). Preoperative stereotactic MRI determined coordinates for the GPi target. Digitised spike trains were analysed offline, blind to clinical data. Electrode placement was confirmed by a postoperative stereotactic CT scan.FindingsWe identified 263 GPi and 87 GPe cells. Both GPi and GPe firing frequencies differed significantly with dystonia aetiology. The median GPi firing frequency was higher in the primary group than in the secondary static group (13.5 Hz vs 9.6 Hz; p=0.002) and higher in the NBIA group than in either the primary (25 Hz vs 13.5 Hz; p=0.006) or the secondary static group (25 Hz vs 9.6 Hz; p=0.00004). The median GPe firing frequency was higher in the NBIA group than in the secondary static group (15.9 Hz vs 7 Hz; p=0.013). The NBIA group also showed a higher proportion of regularly firing GPi cells compared with the other groups (p<0.001). A higher proportion of regular GPi cells was also seen in patients with fixed/tonic dystonia compared with a phasic/dynamic dystonia phenotype (p<0.001). The GPi firing frequency showed a positive correlation with 1-year outcome from DBS measured by improvement in the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS-m) score (p=0.030). This association was stronger for the non-progressive patients (p=0.006).InterpretationPallidal firing rates and patterns differ significantly with dystonia aetiology and phenotype. Identification of specific firing patterns may help determine targets and patient-specific protocols for neuromodulation therapy.FundingNational Institute of Health Research, Guy's and St. Thomas’ Charity, Dystonia Society UK, Action Medical Research, German National Academic Foundation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
VMM and AV contributed equally as first authors; GA and J-PL contributed equally as senior authors.
ISSN:0022-3050
1468-330X
DOI:10.1136/jnnp-2015-311803