Targeting the IL-6–Yap–Snail signalling axis in synovial fibroblasts ameliorates inflammatory arthritis

ObjectiveWe aimed to understand the role of the transcriptional co-factor Yes-associated protein (Yap) in the molecular pathway underpinning the pathogenic transformation of synovial fibroblasts (SF) in rheumatoid arthritis (RA) to become invasive and cause joint destruction.MethodsSynovium from pat...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the rheumatic diseases Vol. 81; no. 2; pp. 214 - 224
Main Authors Symons, Rebecca A, Colella, Fabio, Collins, Fraser L, Rafipay, Alexandra J, Kania, Karolina, McClure, Jessica J, White, Nathan, Cunningham, Iain, Ashraf, Sadaf, Hay, Elizabeth, Mackenzie, Kevin S, Howard, Kenneth A, Riemen, Anna H K, Manzo, Antonio, Clark, Susan M, Roelofs, Anke J, De Bari, Cosimo
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group Ltd and European League Against Rheumatism 01.02.2022
BMJ Publishing Group LTD
BMJ Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ObjectiveWe aimed to understand the role of the transcriptional co-factor Yes-associated protein (Yap) in the molecular pathway underpinning the pathogenic transformation of synovial fibroblasts (SF) in rheumatoid arthritis (RA) to become invasive and cause joint destruction.MethodsSynovium from patients with RA and mice with antigen-induced arthritis (AIA) was analysed by immunostaining and qRT-PCR. SF were targeted using Pdgfrα-CreER and Gdf5-Cre mice, crossed with fluorescent reporters for cell tracing and Yap-flox mice for conditional Yap ablation. Fibroblast phenotypes were analysed by flow cytometry, and arthritis severity was assessed by histology. Yap activation was detected using Yap–Tead reporter cells and Yap–Snail interaction by proximity ligation assay. SF invasiveness was analysed using matrigel-coated transwells.ResultsYap, its binding partner Snail and downstream target connective tissue growth factor were upregulated in hyperplastic human RA and in mouse AIA synovium, with Yap detected in SF but not macrophages. Lineage tracing showed polyclonal expansion of Pdgfrα-expressing SF during AIA, with predominant expansion of the Gdf5-lineage SF subpopulation descending from the embryonic joint interzone. Gdf5-lineage SF showed increased expression of Yap and adopted an erosive phenotype (podoplanin+Thy-1 cell surface antigen−), invading cartilage and bone. Conditional ablation of Yap in Gdf5-lineage cells or Pdgfrα-expressing fibroblasts ameliorated AIA. Interleukin (IL)-6, but not tumour necrosis factor alpha (TNF-α) or IL-1β, Jak-dependently activated Yap and induced Yap–Snail interaction. SF invasiveness induced by IL-6 stimulation or Snail overexpression was prevented by Yap knockdown, showing a critical role for Yap in SF transformation in RA.ConclusionsOur findings uncover the IL-6–Yap–Snail signalling axis in pathogenic SF in inflammatory arthritis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-4967
1468-2060
DOI:10.1136/annrheumdis-2021-220875