Lack of cross-desensitization between leptin and prolactin signaling pathways despite the induction of suppressor of cytokine signaling 3 and PTP-1B

Hyperprolactinemia and hyperleptinemia occur during gestation and lactation with marked hyperphagia associated with leptin resistance. Prolactin (PRL) induces the expression of orexigenic neuropeptide Y (NPY) through the activation of JAK-2/STAT-3 signaling pathway in hypothalamic paraventricular nu...

Full description

Saved in:
Bibliographic Details
Published inJournal of endocrinology Vol. 195; no. 2; pp. 341 - 350
Main Authors Roy, A F, Benomar, Y, Bailleux, V, Vacher, C M, Aubourg, A, Gertler, A, Djiane, J, Taouis, M
Format Journal Article
LanguageEnglish
Published Colchester BioScientifica 01.11.2007
Portland Press
Subjects
Rat
RAT
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hyperprolactinemia and hyperleptinemia occur during gestation and lactation with marked hyperphagia associated with leptin resistance. Prolactin (PRL) induces the expression of orexigenic neuropeptide Y (NPY) through the activation of JAK-2/STAT-3 signaling pathway in hypothalamic paraventricular nucleus (PVN) leading to hyperphagia. PRL may also act through the inhibition of anorexigenic effect of leptin via induction of suppressor of cytokine signaling 3 (SOCS-3). This paper aimed to co-localize PRL (PRL-R) and leptin (ObRb) receptors in the hypothalamus of female rats and investigate the possible cross-desensitization between PRL-R and ObRb. We showed that: 1) PRL-R and ObRb are expressed in the PVN and co-localized in the same neurons; 2) in lactating females leptin failed to activate JAK-2/STAT-3 signaling pathway; 3) in Chinese Hamster Ovary (CHO) stably co-expressing PRL-R and ObRb, overexposure to PRL did not affect leptin signaling but totally abolished PRL-dependent STAT-5 phosphorylation. The overexposure to leptin produces similar results with strong alteration of leptin-dependent STAT-3 phosphorylation, whereas PRL-dependent STAT-5 was not affected; and 4) CHO-ObRb/PRL-R cells overexposure to leptin or PRL induces the expression of negative regulators SOCS-3 and PTP-1B. Thus, we conclude that these negative regulators affect specifically the inducer signaling pathway; for instance, SOCS-3 induced by PRL will affect PRL-R signaling but not ObRb signaling and vice versa. Finally, the lack of cross-desensitization between PURL-R and ObRb suggests that hyperphagia observed during gestation and lactation may be attributed to a direct effect of PRL on NPYexpression, and is most likely exacerbated by the physiological leptin resistance state.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-0795
1479-6805
DOI:10.1677/JOE-07-0321