APOC-III Antisense Oligonucleotides: A New Option for the Treatment of Hypertriglyceridemia

Elevated triglyceride levels (higher than ~1000 mg/dL) are associated with an increased risk for pancreatitis. Apolipoprotein-CIII (apoC-III) plays a key role in the metabolism of triglycerides and triglyceride-rich lipoproteins. Loss of function mutations in the gene encoding apoC-III (APOC3) is as...

Full description

Saved in:
Bibliographic Details
Published inCurrent medicinal chemistry Vol. 25; no. 13; p. 1567
Main Authors Schmitz, Joel, Gouni-Berthold, Ioanna
Format Journal Article
LanguageEnglish
Published United Arab Emirates 01.01.2018
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Elevated triglyceride levels (higher than ~1000 mg/dL) are associated with an increased risk for pancreatitis. Apolipoprotein-CIII (apoC-III) plays a key role in the metabolism of triglycerides and triglyceride-rich lipoproteins. Loss of function mutations in the gene encoding apoC-III (APOC3) is associated with low triglyceride levels and a decreased risk for cardiovascular disease (CVD) while overexpression of APOC3 is associated with hypertriglyceridemia. Although many drugs such as fibrates, statins and omega-3 fatty acids modestly decrease triglyceride levels (and apoC-III concentrations), there are many patients who still have severe hypertriglyceridemia and are at increased risk for pancreatitis and potentially for CVD. The antisense oligonucleotide (ASO) against APOC3 mRNA volanesorsen (previously called ISIS 304801, ISIS-ApoCIIIRx and IONIS-ApoCIIIRx) robustly decreases both, apoC-III production and triglyceride concentrations and is being currently evaluated in phase 3 trials. In this narrative review, we present the currently available clinical evidence on the efficacy and safety of volanesorsen for the treatment of hypertriglyceridemia.
ISSN:1875-533X
DOI:10.2174/0929867324666170609081612