Genome-wide association study of perioperative myocardial infarction after coronary artery bypass surgery

Objectives Identification of patient subpopulations susceptible to develop myocardial infarction (MI) or, conversely, those displaying either intrinsic cardioprotective phenotypes or highly responsive to protective interventions remain high-priority knowledge gaps. We sought to identify novel common...

Full description

Saved in:
Bibliographic Details
Published inBMJ open Vol. 5; no. 5; p. e006920
Main Authors Kertai, Miklos D, Li, Yi-Ju, Li, Yen-Wei, Ji, Yunqi, Alexander, John, Newman, Mark F, Smith, Peter K, Joseph, Diane, Mathew, Joseph P, Podgoreanu, Mihai V
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group LTD 06.05.2015
BMJ Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objectives Identification of patient subpopulations susceptible to develop myocardial infarction (MI) or, conversely, those displaying either intrinsic cardioprotective phenotypes or highly responsive to protective interventions remain high-priority knowledge gaps. We sought to identify novel common genetic variants associated with perioperative MI in patients undergoing coronary artery bypass grafting using genome-wide association methodology. Setting 107 secondary and tertiary cardiac surgery centres across the USA. Participants We conducted a stage I genome-wide association study (GWAS) in 1433 ethnically diverse patients of both genders (112 cases/1321 controls) from the Genetics of Myocardial Adverse Outcomes and Graft Failure (GeneMAGIC) study, and a stage II analysis in an expanded population of 2055 patients (225 cases/1830 controls) combined from the GeneMAGIC and Duke Perioperative Genetics and Safety Outcomes (PEGASUS) studies. Patients undergoing primary non-emergent coronary bypass grafting were included. Primary and secondary outcome measures The primary outcome variable was perioperative MI, defined as creatine kinase MB isoenzyme (CK-MB) values ≥10× upper limit of normal during the first postoperative day, and not attributable to preoperative MI. Secondary outcomes included postoperative CK-MB as a quantitative trait, or a dichotomised phenotype based on extreme quartiles of the CK-MB distribution. Results Following quality control and adjustment for clinical covariates, we identified 521 single nucleotide polymorphisms in the stage I GWAS analysis. Among these, 8 common variants in 3 genes or intergenic regions met p<10−5 in stage II. A secondary analysis using CK-MB as a quantitative trait (minimum p=1.26×10−3 for rs609418), or a dichotomised phenotype based on extreme CK-MB values (minimum p=7.72×10−6 for rs4834703) supported these findings. Pathway analysis revealed that genes harbouring top-scoring variants cluster in pathways of biological relevance to extracellular matrix remodelling, endoplasmic reticulum-to-Golgi transport and inflammation. Conclusions Using a two-stage GWAS and pathway analysis, we identified and prioritised several potential susceptibility loci for perioperative MI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2044-6055
2044-6055
DOI:10.1136/bmjopen-2014-006920