Extracellular secretion of Carocin S1 in Pectobacterium carotovorum subsp. carotovorum occurs via the type III secretion system integral to the bacterial flagellum

Pectobacterium carotovorum subsp. carotovorum is a phytopathogenic enterobacterium responsible for soft rot, a disease characterized by extensive maceration of the affected plant tissue. This species also produces two or more antibacterial substances called bacteriocins, which enhance its competitiv...

Full description

Saved in:
Bibliographic Details
Published inBMC microbiology Vol. 9; no. 1; p. 181
Main Authors Chan, Yung-Chieh, Wu, Huang-Pin, Chuang, Duen-Yau
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 27.08.2009
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pectobacterium carotovorum subsp. carotovorum is a phytopathogenic enterobacterium responsible for soft rot, a disease characterized by extensive maceration of the affected plant tissue. This species also produces two or more antibacterial substances called bacteriocins, which enhance its competitiveness against related rival species. However, the secretion mechanism for low-molecular-weight bacteriocin is still unknown. A mutant (flhC::Tn5) that did not secrete the low-molecular-weight bacteriocin (LMWB), Carocin S1, was generated by Tn5 insertional mutagenesis. Sequence analysis indicated that this insertion disrupted open reading frame 2 (ORF2) and ORF3 of this strain. Deletion and rescue experiments indicated that ORF2 and ORF3 were both required for extracellular LMWB secretion. The ORF2 and ORF3 sequences showed high homology with the flhD and flhC gene sequences of Pectobacterium carotovorum subsp. atroseptica, Serratia marcescens, Yersinia enterocolitica, and Escherichia coli, indicating that they likely encoded key regulatory components of the type III flagella secretion system. Thus, the extracellular export of Carocin S1 by Pectobacterium carotovorum subsp. carotovorum appears to utilize the type III secretion system integral to bacterial flagella.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2180
1471-2180
DOI:10.1186/1471-2180-9-181