Respiratory epithelial cells require Toll-like receptor 4 for induction of human beta-defensin 2 by lipopolysaccharide

The respiratory epithelium is a major portal of entry for pathogens and employs innate defense mechanisms to prevent colonization and infection. Induced expression of human beta-defensin 2 (HBD2) represents a direct response by the epithelium to potential infection. Here we provide evidence for the...

Full description

Saved in:
Bibliographic Details
Published inRespiratory research Vol. 6; no. 1; p. 116
Main Authors MacRedmond, Ruth, Greene, Catherine, Taggart, Clifford C, McElvaney, Noel, O'Neill, Shane
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 12.10.2005
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The respiratory epithelium is a major portal of entry for pathogens and employs innate defense mechanisms to prevent colonization and infection. Induced expression of human beta-defensin 2 (HBD2) represents a direct response by the epithelium to potential infection. Here we provide evidence for the critical role of Toll-like receptor 4 (TLR4) in lipopolysaccharide (LPS)-induced HBD2 expression by human A549 epithelial cells. Using RTPCR, fluorescence microscopy, ELISA and luciferase reporter gene assays we quantified interleukin-8, TLR4 and HBD2 expression in unstimulated or agonist-treated A549 and/or HEK293 cells. We also assessed the effect of over expressing wild type and/or mutant TLR4, MyD88 and/or Mal transgenes on LPS-induced HBD2 expression in these cells. We demonstrate that A549 cells express TLR4 on their surface and respond directly to Pseudomonas LPS with increased HBD2 gene and protein expression. These effects are blocked by a TLR4 neutralizing antibody or functionally inactive TLR4, MyD88 and/or Mal transgenes. We further implicate TLR4 in LPS-induced HBD2 production by demonstrating HBD2 expression in LPS non-responsive HEK293 cells transfected with a TLR4 expression plasmid. This data defines an additional role for TLR4 in the host defense in the lung.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1465-993X
1465-9921
1465-993X
1465-9921
DOI:10.1186/1465-9921-6-116