Galectin-9 is an easy to measure biomarker for the interferon signature in systemic lupus erythematosus and antiphospholipid syndrome

ObjectiveThe interferon (IFN) signature is related to disease activity and vascular disease in systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) and represents a promising therapeutic target. Quantification of the IFN signature is currently performed by gene expression analysis,...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the rheumatic diseases Vol. 77; no. 12; pp. 1810 - 1814
Main Authors van den Hoogen, Lucas L, van Roon, Joël A G, Mertens, Jorre S, Wienke, Judith, Lopes, Ana Pinheiro, de Jager, Wilco, Rossato, Marzia, Pandit, Aridaman, Wichers, Catharina G K, van Wijk, Femke, Fritsch-Stork, Ruth D E, Radstake, Timothy R D J
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group LTD 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ObjectiveThe interferon (IFN) signature is related to disease activity and vascular disease in systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) and represents a promising therapeutic target. Quantification of the IFN signature is currently performed by gene expression analysis, limiting its current applicability in clinical practice. Therefore, the objective of this study was to establish an easy to measure biomarker for the IFN signature.MethodsSerum levels of galectin-9, CXCL-10 (IP-10) and tumour necrosis factor receptor type II (TNF-RII) were measured in patients with SLE, SLE+APS and primary APS (PAPS) and healthy controls (n=148) after an initial screening of serum analytes in a smaller cohort (n=43). Analytes were correlated to measures of disease activity and the IFN signature. The performance of galectin-9, CXCL-10 and TNF-RII as biomarkers to detect the IFN signature was assessed by receiver operating characteristic curves.ResultsGalectin-9, CXCL-10 and TNF-RII were elevated in patients with SLE, SLE+APS and PAPS (p<0.05) and correlated with disease activity and tissue factor expression. Galectin-9 correlated stronger than CXCL-10 or TNF-RII with the IFN score (r=0.70, p<0.001) and was superior to CXCL-10 or TNF-RII in detecting the IFN signature (area under the curve (AUC) 0.86). Importantly, in patients with SLE(±APS), galectin-9 was also superior to anti-dsDNA antibody (AUC 0.70), or complement C3 (AUC 0.70) and C4 (AUC 0.78) levels in detecting the IFN signature.ConclusionGalectin-9 is a novel, easy to measure hence clinically applicable biomarker to detect the IFN signature in patients with systemic autoimmune diseases such as SLE and APS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-4967
1468-2060
DOI:10.1136/annrheumdis-2018-213497