The rheumatoid arthritis shared epitope increases cellular susceptibility to oxidative stress by antagonizing an adenosine-mediated anti-oxidative pathway

We have recently demonstrated that the rheumatoid arthritis (RA) shared epitope (SE) acts as a ligand that triggers nitric oxide (NO) signaling in opposite cells. Given the known pro-oxidative effect of NO and the proposed role of oxidative stress in the pathogenesis of RA, this study explores wheth...

Full description

Saved in:
Bibliographic Details
Published inArthritis research & therapy Vol. 9; no. 1; p. R5
Main Authors Ling, Song, Li, Zhanguo, Borschukova, Olga, Xiao, Liqun, Pumpens, Paul, Holoshitz, Joseph
Format Journal Article
LanguageEnglish
Published England National Library of Medicine - MEDLINE Abstracts 01.01.2007
BioMed Central Ltd
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have recently demonstrated that the rheumatoid arthritis (RA) shared epitope (SE) acts as a ligand that triggers nitric oxide (NO) signaling in opposite cells. Given the known pro-oxidative effect of NO and the proposed role of oxidative stress in the pathogenesis of RA, this study explores whether SE-triggered signaling can increase cellular oxidative stress. cAMP levels, adenylyl cyclase activity, and protein kinase A activity were measured using commercial kits. Generation of reactive oxygen species (ROS) was quantified using the fluorochrome dichlorofluorescein diacetate. Oxidative DNA damage was quantified using the single-cell electrophoresis technique. Here, we report that cells exposed to cell surface SE-positive HLA-DR (human leukocyte antigen-DR) molecules, to cell-free recombinant proteins genetically engineered to express the SE motif, or to SE-positive synthetic peptide showed diminished cAMP-dependent signaling, increased ROS levels, and higher vulnerability to oxidative DNA damage. Introduction of single amino acid substitutions into SE-positive peptides revealed a consensus five-amino acid sequence motif of Q/R-K/R-X-X-A that is necessary and sufficient for SE-triggered signaling. The pro-oxidative effect of the SE could be reversed by inhibiting NO production. We conclude that the SE acts as a signaling ligand that activates an NO-mediated pro-oxidative pathway. The potential contribution of this signaling aberration to RA pathogenesis is discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1478-6354
1478-6362
1478-6354
DOI:10.1186/ar2111