Alpha-amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits alpha-amylases from the coffee berry borer pest

Coffee is an important crop and is crucial to the economy of many developing countries, generating around US$70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect...

Full description

Saved in:
Bibliographic Details
Published inBMC biotechnology Vol. 10; no. 1; p. 44
Main Authors Barbosa, Aulus E A D, Albuquerque, Erika V S, Silva, Maria C M, Souza, Djair S L, Oliveira-Neto, Osmundo B, Valencia, Arnubio, Rocha, Thales L, Grossi-de-Sa, Maria F
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 17.06.2010
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coffee is an important crop and is crucial to the economy of many developing countries, generating around US$70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei), is responsible for worldwide annual losses of around US$500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an alpha-amylase inhibitor gene (alpha-AI1), which confers resistance against the coffee berry borer insect-pest, into C. arabica plants. We transformed C. arabica with the alpha-amylase inhibitor-1 gene (alpha-AI1) from the common bean, Phaseolus vulgaris, under control of the seed-specific phytohemagglutinin promoter (PHA-L). The presence of the alpha-AI1 gene in six regenerated transgenic T1 coffee plants was identified by PCR and Southern blotting. Immunoblotting and ELISA experiments using antibodies against alpha-AI1 inhibitor showed a maximum alpha-AI1 concentration of 0.29% in crude seed extracts. Inhibitory in vitro assays of the alpha-AI1 protein against H. hampei alpha-amylases in transgenic seed extracts showed up to 88% inhibition of enzyme activity. This is the first report showing the production of transgenic coffee plants with the biotechnological potential to control the coffee berry borer, the most important insect-pest of crop coffee.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1472-6750
1472-6750
DOI:10.1186/1472-6750-10-44