Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide

ObjectiveChronic obstructive pulmonary disease (COPD) is a global disease characterised by chronic obstruction of lung airflow interfering with normal breathing. Although the microbiota of respiratory tract is established to be associated with COPD, the causality of gut microbiota in COPD developmen...

Full description

Saved in:
Bibliographic Details
Published inGut Vol. 71; no. 2; pp. 309 - 321
Main Authors Lai, Hsin-Chih, Lin, Tzu-Lung, Chen, Ting-Wen, Kuo, Yu-Lun, Chang, Chih-Jung, Wu, Tsung-Ru, Shu, Ching-Chung, Tsai, Ying-Huang, Swift, Simon, Lu, Chia-Chen
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group Ltd and British Society of Gastroenterology 01.02.2022
BMJ Publishing Group LTD
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ObjectiveChronic obstructive pulmonary disease (COPD) is a global disease characterised by chronic obstruction of lung airflow interfering with normal breathing. Although the microbiota of respiratory tract is established to be associated with COPD, the causality of gut microbiota in COPD development is not yet established. We aimed to address the connection between gut microbiota composition and lung COPD development, and characterise bacteria and their derived active components for COPD amelioration.DesignA murine cigarette smoking (CS)-based model of COPD and strategies evaluating causal effects of microbiota were performed. Gut microbiota structure was analysed, followed by isolation of target bacterium. Single cell RNA sequencing, together with sera metabolomics analyses were performed to identify host responsive molecules. Bacteria derived active component was isolated, followed by functional assays.ResultsGut microbiota composition significantly affects CS-induced COPD development, and faecal microbiota transplantation restores COPD pathogenesis. A commensal bacterium Parabacteroides goldsteinii was isolated and shown to ameliorate COPD. Reduction of intestinal inflammation and enhancement of cellular mitochondrial and ribosomal activities in colon, systematic restoration of aberrant host amino acids metabolism in sera, and inhibition of lung inflammations act as the important COPD ameliorative mechanisms. Besides, the lipopolysaccharide derived from P. goldsteinii is anti-inflammatory, and significantly ameliorates COPD by acting as an antagonist of toll-like receptor 4 signalling pathway.ConclusionThe gut microbiota–lung COPD axis was connected. A potentially benefial bacterial strain and its functional component may be developed and used as alternative agents for COPD prevention or treatment.
Bibliography:Original research
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0017-5749
1468-3288
1468-3288
DOI:10.1136/gutjnl-2020-322599