Pesticide transport and transformation modeling in soil column and groundwater contamination prediction

Pesticide transport and transformation were modeled in soil column from the soil surface to groundwater zone. A one dimensional dynamic mathematical and computer model is formulated to simulate two types of pesticides namely 2,4-dichlorophenoxy acetic acid and 1,2-dibromo 3-chloro propane in soil co...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental science and technology (Tehran) Vol. 6; no. 2; pp. 233 - 242
Main Authors Mirbagheri, S. A, Hashemi Monfared, S. A
Format Journal Article
LanguageEnglish
Published Iran Center for Environment and Energy Research and Studies (CEERS) 2009
Springer-Verlag
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pesticide transport and transformation were modeled in soil column from the soil surface to groundwater zone. A one dimensional dynamic mathematical and computer model is formulated to simulate two types of pesticides namely 2,4-dichlorophenoxy acetic acid and 1,2-dibromo 3-chloro propane in soil column. This model predicts the behavior and persistence of these pesticides in soil column and groundwater. The model is based on mass balance equation, including convective transport, dispersive transport and chemical adsorption in the phases such as solid, liquid and gas. The mathematical solution is obtained by finite difference implicit method. The model was verified with experimental measurements and also with analytical solution. The simulation results are in good agreement with measured values. The major findings of this research are the development of the model which can calculate and predict the concentration of pesticides in soil profiles, as well as groundwater after 4, 12, 31 days of pesticide application under steady state and unsteady water flow condition. With the results of this study, the distribution of various types of pesticides in soil column to groundwater table can be predicted.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1735-1472
1735-2630
DOI:10.1007/BF03327627