Molecular and clinical analysis of a neonatal severe hyperparathyroidism case caused by a stop mutation in the calcium-sensing receptor extracellular domain representing in effect a human ‘knockout’

ObjectiveLoss-of-function calcium-sensing receptor (CAR) mutations cause elevated parathyroid hormone (PTH) secretion and hypercalcaemia. Although full Car deletion is possible in mice, most human CAR mutations result from a single amino acid substitution that maintains partial function. However, he...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of endocrinology Vol. 169; no. 1; pp. K1 - K7
Main Authors Ward, D T, Mughal, M Z, Ranieri, M, Dvorak-Ewell, M M, Valenti, G, Riccardi, D
Format Journal Article
LanguageEnglish
Published Bristol BioScientifica 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ObjectiveLoss-of-function calcium-sensing receptor (CAR) mutations cause elevated parathyroid hormone (PTH) secretion and hypercalcaemia. Although full Car deletion is possible in mice, most human CAR mutations result from a single amino acid substitution that maintains partial function. However, here, we report a case of neonatal severe hyperparathyroidism (NSHPT) in which the truncated CaR lacks any transmembrane domain (CaRR392X), in effect a full CAR ‘knockout’.Case reportThe infant (daughter of distant cousins) presented with hypercalcaemia (5.5–6 mmol/l corrected calcium (2.15–2.65)) and elevated PTH concentrations (650–950 pmol/l (12–81)) together with skeletal demineralisation. NSHPT was confirmed by CAR gene sequencing (homozygous c.1174C-to-T mutation) requiring total parathyroidectomy during which only two glands were located and removed, resulting in normalisation of her serum PTH/calcium levels.Design and methodsThe R392X stop codon was inserted into human CAR and the resulting mutant (CaRR392X) expressed transiently in HEK-293 cells.ResultsCaRR392X expressed as a 54 kDa dimeric glycoprotein that was undetectable in conditioned medium or in the patient's urine. The membrane localisation observed for wild-type CaR in parathyroid gland and transfected HEK-293 cells was absent from the proband's parathyroid gland and from CaRR392X-transfected cells. Expression of the mutant was localised to endoplasmic reticulum consistent with its lack of functional activity.ConclusionsIntriguingly, the patient remained normocalcaemic throughout childhood (2.5 mM corrected calcium, 11 pg/ml PTH (10–71), age 8 years) but exhibited mild asymptomatic hypocalcaemia at age 10 years, now treated with 1-hydroxycholecalciferol and Ca2+ supplementation. Despite representing a virtual CAR knockout, the patient displays no obvious pathologies beyond her calcium homeostatic dysfunction.
Bibliography:ObjectType-Case Study-2
SourceType-Scholarly Journals-1
ObjectType-Feature-4
content type line 23
ObjectType-Report-1
ObjectType-Article-3
ISSN:0804-4643
1479-683X
DOI:10.1530/EJE-13-0094