Stability analysis for impulsive stochastic fuzzy p-Laplace dynamic equations under Neumann or Dirichlet boundary condition
Under Neumann or Dirichlet boundary conditions, the stability of a class of delayed impulsive Markovian jumping stochastic fuzzy p -Laplace partial differential equations (PDEs) is considered. Thanks to some methods different from those of previous literature, the difficulties brought by fuzzy stoch...
Saved in:
Published in | Boundary value problems Vol. 2013; no. 1; p. 133 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
20.05.2013
BioMed Central Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Under Neumann or Dirichlet boundary conditions, the stability of a class of delayed impulsive Markovian jumping stochastic fuzzy
p
-Laplace partial differential equations (PDEs) is considered. Thanks to some methods different from those of previous literature, the difficulties brought by fuzzy stochastic mathematical model and impulsive model have been overcome. By way of the Lyapunov-Krasovskii functional, Itô formula, Dynkin formula and a differential inequality, new LMI-based global stochastic exponential stability criteria for the above-mentioned PDEs are established. Some applications of the obtained results improve some existing results on neural networks. And some numerical examples are presented to illustrate the effectiveness of the proposed method due to the significant improvement in the allowable upper bounds of time delays.
MSC:
34D20, 34D23, 34B45, 34B37, 34K20. |
---|---|
ISSN: | 1687-2770 1687-2770 |
DOI: | 10.1186/1687-2770-2013-133 |