Hypothalamic mechanisms linking fatty acid sensing and food intake regulation in rainbow trout

We assessed in rainbow trout hypothalamus the effects of oleate and octanoate on levels and phosphorylation status of two transcription factors, FoxO1 and CREB, possibly involved in linking activation of fatty acid sensing with modulation of food intake through the expression of brain neuropeptides....

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular endocrinology Vol. 59; no. 4; pp. 377 - 390
Main Authors Velasco, Cristina, Otero-Rodiño, Cristina, Comesaña, Sara, Míguez, Jesús M, Soengas, José L
Format Journal Article
LanguageEnglish
Published England Bioscientifica Ltd 01.11.2017
Society for Endocrinology & BioScientifica Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We assessed in rainbow trout hypothalamus the effects of oleate and octanoate on levels and phosphorylation status of two transcription factors, FoxO1 and CREB, possibly involved in linking activation of fatty acid sensing with modulation of food intake through the expression of brain neuropeptides. Moreover, we assessed changes in the phosphorylation status of three proteins possibly involved in modulation of these transcription factors such as Akt, AMPK and mTOR. In a first experiment, we evaluated, in pools of hypothalamus incubated for 3 h and 6 h at 15°C in a modified Hanks’ medium containing 100 or 500 µM oleate or octanoate, the response of fatty acid sensing, neuropeptide expression and phosphorylation status of proteins of interest. The activation of fatty acid sensing and enhanced anorectic potential occurred in parallel with the activation of Akt and mTOR, and the inhibition of AMPK. The changes in these proteins would relate to a neuropeptide expression through changes in the phosphorylation status of transcription factors under their control, such as CREB and FoxO1, which displayed inhibitory (CREB) or activatory (FoxO1) responses when tissues were incubated with oleate or octanoate. In a second experiment, we incubated hypothalamus for 6 h with 500 µM oleate or octanoate alone or in the presence of specific inhibitors of Akt, AMPK, mTOR, CREB or FoxO1. The presence of inhibitors counteracted the effects of oleate or octanoate on the phosphorylation status of the proteins of interest. The results support, for the first time in fish, the involvement of these proteins in the regulation of food intake by fatty acids.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0952-5041
1479-6813
DOI:10.1530/JME-17-0148