Inhibition of SHMT2 mRNA translation increases embryonic mortality in sheep

The one-carbon metabolism (OCM) pathway provides purines and thymidine for synthesis of nucleic acids required for cell division, and S-adenosyl methionine for polyamine and creatine syntheses and the epigenetic regulation of gene expression. This study aimed to determine if serine hydroxymethyltran...

Full description

Saved in:
Bibliographic Details
Published inBiology of reproduction Vol. 107; no. 5; pp. 1279 - 1295
Main Authors Sah, Nirvay, Stenhouse, Claire, Halloran, Katherine M., Moses, Robyn M., Seo, Heewon, Burghardt, Robert C., Johnson, Gregory A., Wu, Guoyao, Bazer, Fuller W.
Format Journal Article
LanguageEnglish
Published United States Society for the Study of Reproduction 01.11.2022
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The one-carbon metabolism (OCM) pathway provides purines and thymidine for synthesis of nucleic acids required for cell division, and S-adenosyl methionine for polyamine and creatine syntheses and the epigenetic regulation of gene expression. This study aimed to determine if serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in the OCM pathway, is critical for ovine trophectoderm (oTr) cell function and conceptus development by inhibiting translation of SHMT2 mRNA using a morpholino antisense oligonucleotide (MAO). In vitro treatment of oTr cells with MAO-SHMT2 decreased expression of SHMT2 protein, which was accompanied by reduced proliferation (P = 0.053) and migration (P < 0.05) of those cells. Intrauterine injection of MAO-SHMT2 in ewes on Day 11 post-breeding tended to decrease the overall pregnancy rate (on Days 16 and 18) compared with MAO-control (3/10 vs. 7/10, P = 0.07). The three viable conceptuses (n = 2 on Day 16 and n = 1 on Day 18) recovered from MAO-SHMT2 ewes had only partial inhibition of SHMT2 mRNA translation. Conceptuses from the three pregnant MAO-SHMT2 ewes had similar levels of expression of mRNAs and proteins involved in OCM as compared with conceptuses from MAO-control ewes. These results indicate that knockdown of SHMT2 protein reduces proliferation and migration of oTr cells (in vitro) to decrease elongation of blastocysts from spherical to elongated forms. These in vitro effects suggest that increased embryonic deaths in ewes treated with MAO-SHMT2 are the result of decreased SHMT2-mediated trophectoderm cell proliferation and migration supporting a role for the OCM pathway in survival and development of ovine conceptuses. Summary Sentence Inhibition of SHMT2 mRNA translation reduces proliferation and migration of ovine trophectoderm cells and increases embryonic mortality in sheep suggesting that one-carbon metabolism is critical for conceptus development. Graphical Abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3363
1529-7268
DOI:10.1093/biolre/ioac152