Seasonal reproduction and gonadal function: a focus on humans starting from animal studies
Photoperiod impacts reproduction in many species of mammals. Mating occurs at specific seasons to achieve reproductive advantages, such as optimization of offspring survival. Light is the main regulator of these changes during the photoperiod. Seasonally breeding mammals detect and transduce light s...
Saved in:
Published in | Biology of reproduction Vol. 106; no. 1; pp. 47 - 57 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for the Study of Reproduction
13.01.2022
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Photoperiod impacts reproduction in many species of mammals. Mating occurs at specific seasons to achieve reproductive advantages, such as optimization of offspring survival. Light is the main regulator of these changes during the photoperiod. Seasonally breeding mammals detect and transduce light signals through extraocular photoreceptor, regulating downstream melatonin-dependent peripheral circadian events. In rodents, hormonal reduction and gonadal atrophy occur quickly and consensually with short-day periods. It remains unclear whether photoperiod influences human reproduction. Seasonal fluctuations of sex hormones have been described in humans, although they seem to not imply adaptative seasonal pattern in human gonads. This review discusses current knowledge about seasonal changes in the gonadal function of vertebrates, including humans. The photoperiod-dependent regulation of hypothalamic–pituitary–gonadal axis, as well as morphological and functional changes of the gonads is evaluated herein. Endocrine and morphological variations of reproductive functions, in response to photoperiod, are of interest as they may reflect the nature of past population selection for adaptative mechanisms that occurred during evolution. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 0006-3363 1529-7268 |
DOI: | 10.1093/biolre/ioab199 |