Inactivation of Iron Responsive Element–binding Capacity and Aconitase Function of Iron Regulatory Protein-1 of Skin Cells by Ultraviolet A

The ultraviolet-A (UVA) component of sunlight produces in cutaneous cells a highly toxic oxidative stress mediated by redox cycling reactions of Fe ions. A tight regulation of cell iron uptake and storage by iron regulatory proteins (IRP) of keratinocytes and fibroblasts avoids these damaging reacti...

Full description

Saved in:
Bibliographic Details
Published inPhotochemistry and photobiology Vol. 72; no. 6; pp. 746 - 752
Main Authors Giordani, Anne, Martin, Marie-Elise, Beaumont, Carole, Santus, René, Morlière, Patrice
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ultraviolet-A (UVA) component of sunlight produces in cutaneous cells a highly toxic oxidative stress mediated by redox cycling reactions of Fe ions. A tight regulation of cell iron uptake and storage by iron regulatory proteins (IRP) of keratinocytes and fibroblasts avoids these damaging reactions. We report here that about 40 J/cm2 of UVA are required to inactivate half of the binding capacity of apo-IRP-1 to iron responsive elements (IRE) of RNA whereas 15 J/cm2 already inhibit half of the holo-IRP-1 aconitase activity. No increase in the holo-IRP-1 activity is observed during the apo-IRP-1 photoinactivation suggesting that UVA does not trigger a shift between these two forms. As opposed to holo-IRP-1, which contains a 4Fe–4S cluster, apo-IRP-1 has no UVA chromophore. Thus it should be inactivated indirectly by reactive oxygen species generated by the UVA-induced endogenous photo-oxidative stress. The apo-IRP-1 photoinactivation is weakly prevented by the lipophilic oxyradical scavenger vitamin E but not by the hydrophilic azide anion, a singlet oxygen quencher or by diethyldithiocarbamate, a superoxide dismutase inhibitor. However, full protection against photoinactivation of the apo form is observed after incubation with N-acetylcysteine but the latter only partially protects the aconitase function of the holo-IRP-1 from photoinactivation. The marked difference in the kinetics of photoinactivation of the apo and holo forms, the light dose–independent effect of the sulfhydril group reagent, 2-mercaptoethanol and the partial protection brought by the ferric ion complexing agent desferrioxamine suggest that the photochemistry of the 4Fe–4S cluster of the holo form plays little, if any, role in the photoinactivation of the apo-IRP-1/IRE interaction. It is concluded that the apo/holo equilibrium is irreversibly destroyed by UVA irradiation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-8655
1751-1097
DOI:10.1562/0031-8655(2000)072<0746:IOIREB>2.0.CO;2