Biologically active human islet amyloid polypeptide/amylin in transgenic mice

Abstract Objective: Human islet amyloid polypeptide (hIAPP), also named amylin, is a pancreatic β cell protein implicated in the pathogenesis of pancreatic islet amyloid formation and type 2 diabetes mellitus. To study the (patho)physiological roles of hIAPP, we have generated transgenic mice that o...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of endocrinology Vol. 136; no. 1; pp. 107 - 113
Main Authors VAN HULST, K. L, BORN, W, MUFF, R, OOSTERWIJK, C, BLANKENSTEIN, M. A, LIPS, C. J. M, FISCHER, J. A, HÖPPENER, J. W. M
Format Journal Article
LanguageEnglish
Published Colchester Portland Press 01.01.1997
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Objective: Human islet amyloid polypeptide (hIAPP), also named amylin, is a pancreatic β cell protein implicated in the pathogenesis of pancreatic islet amyloid formation and type 2 diabetes mellitus. To study the (patho)physiological roles of hIAPP, we have generated transgenic mice that overexpress hIAPP mRNA, in relation to endogenous mouse IAPP (mIAPP) mRNA, in pancreatic β cells. The biological activity of human and mouse IAPP derived from pancreatic extracts was determined. Methods: Pancreatic and plasma extracts of transgenic and control mice were analyzed by reversedphase high-performance liquid chromatography (HPLC) and radioimmunoassay, yielding a separation of hIAPP from mIAPP. Biological activity of immunoreactive human and mouse IAPP components derived from pancreatic extracts was assessed by calcitonin receptor-mediated stimulation of cyclic AMP accumulation in T47D human breast carcinoma cells. Results: The predominant immunoreactive human and mouse IAPP gene products had the retention times on HPLC analysis of the corresponding synthetic peptides. The ratio of bioactive over immunoreactive hIAPP and mIAPP was 0·93 ±0·18 and 1·19 ±0·56 respectively. In extracts of two plasma pools from 4 transgenic animals, hIAPP was 4·6- to 7-fold more abundant than mIAPP. Conclusion; This study has shown that correctly processed hIAPP produced in transgenic mouse pancreatic β cells exhibits full biological activity. The results validate these transgenic mice for the study of (patho)physiological roles of hIAPP in vivo. European Journal of Endocrinology 136 107–113
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0804-4643
1479-683X
DOI:10.1530/eje.0.1360107