On the Field-Based Division Property: Applications to MiMC, Feistel MiMC and GMiMC

Recent practical applications using advanced cryptographic protocols such as multi-party computations (MPC) and zero-knowledge proofs (ZKP) have prompted a range of novel symmetric primitives described over large finite fields, characterized as arithmetization-oriented (AO) ciphers. Such designs, ai...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Cryptology - ASIACRYPT 2022 Vol. 13793; pp. 241 - 270
Main Authors Cui, Jiamin, Hu, Kai, Wang, Meiqin, Wei, Puwen
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 01.01.2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent practical applications using advanced cryptographic protocols such as multi-party computations (MPC) and zero-knowledge proofs (ZKP) have prompted a range of novel symmetric primitives described over large finite fields, characterized as arithmetization-oriented (AO) ciphers. Such designs, aiming to minimize the number of multiplications over fields, have a high risk of being vulnerable to algebraic attacks, especially to the higher-order differential attack. Thus, it is significant to carefully evaluate the growth of their algebraic degree. However, the degree estimation for AO ciphers has been a challenge for cryptanalysts due to the lack of general and accurate methods. In this paper, we extend the division property, a state-of-the-art framework for finding the upper bound of the algebraic degree over binary fields, to the scope of F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^n}$$\end{document}. It is a generic method to detect the algebraic degree for AO ciphers, even applicable to Feistel ciphers which have no better bounds than the trivial exponential one. In this general division property, our idea is to evaluate whether the polynomial representation of a block cipher contains some specific monomials. With a deep investigation of the arithmetical feature, we introduce the propagation rules of monomials for field-based operations, which can be efficiently modeled using the bit-vector theory of SMT. Then the new searching tool for degree estimation can be constructed due to the relationship between the algebraic degree and the exponents of monomials. We apply our new framework to some important AO ciphers, including Feistel MiMC, GMiMC, and MiMC. For Feistel MiMC, we show that the algebraic degree grows significantly slower than the native exponential bound. For the first time, we present a secret-key higher-order differential distinguisher for up to 124 rounds, much better than the 83-round distinguisher for Feistel MiMC permutation proposed at CRYPTO 2020. We also exhibit a full-round zero-sum distinguisher with a data complexity of 2251\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{251}$$\end{document}. Our method can be further extended for the general Feistel structure with more branches and exhibit higher-order differential distinguishers against the practical instance of GMiMC for up to 50 rounds. For MiMC in SP-networks, our results correspond to the exact algebraic degree proved by Bouvier et al. We also point out that the number of rounds in MiMC’s specification is not sufficient to guarantee the security against the higher-order differential attack for MiMC-like schemes with different exponents. The investigation of different exponents provides some guidance on the cipher design.
ISBN:3031229681
9783031229688
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-22969-5_9