A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota

ObjectiveOmega-3 polyunsaturated fatty acids (PUFAs) have anticolorectal cancer (CRC) activity. The intestinal microbiota has been implicated in colorectal carcinogenesis. Dietary omega-3 PUFAs alter the mouse intestinal microbiome compatible with antineoplastic activity. Therefore, we investigated...

Full description

Saved in:
Bibliographic Details
Published inGut Vol. 67; no. 11; pp. 1974 - 1983
Main Authors Watson, Henry, Mitra, Suparna, Croden, Fiona C, Taylor, Morag, Wood, Henry M, Perry, Sarah L, Spencer, Jade A, Quirke, Phil, Toogood, Giles J, Lawton, Clare L, Dye, Louise, Loadman, Paul M, Hull, Mark A
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group LTD 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ObjectiveOmega-3 polyunsaturated fatty acids (PUFAs) have anticolorectal cancer (CRC) activity. The intestinal microbiota has been implicated in colorectal carcinogenesis. Dietary omega-3 PUFAs alter the mouse intestinal microbiome compatible with antineoplastic activity. Therefore, we investigated the effect of omega-3 PUFA supplements on the faecal microbiome in middle-aged, healthy volunteers (n=22).DesignA randomised, open-label, cross-over trial of 8 weeks’ treatment with 4 g mixed eicosapentaenoic acid/docosahexaenoic acid in two formulations (soft-gel capsules and Smartfish drinks), separated by a 12-week ‘washout’ period. Faecal samples were collected at five time-points for microbiome analysis by 16S ribosomal RNA PCR and Illumina MiSeq sequencing. Red blood cell (RBC) fatty acid analysis was performed by liquid chromatography tandem mass spectrometry.ResultsBoth omega-3 PUFA formulations induced similar changes in RBC fatty acid content, except that drinks were associated with a larger, and more prolonged, decrease in omega-6 PUFA arachidonic acid than the capsule intervention (p=0.02). There were no significant changes in α or β diversity, or phyla composition, associated with omega-3 PUFA supplementation. However, a reversible increased abundance of several genera, including Bifidobacterium, Roseburia and Lactobacillus was observed with one or both omega-3 PUFA interventions. Microbiome changes did not correlate with RBC omega-3 PUFA incorporation or development of omega-3 PUFA-induced diarrhoea. There were no treatment order effects.ConclusionOmega-3 PUFA supplementation induces a reversible increase in several short-chain fatty acid-producing bacteria, independently of the method of administration. There is no simple relationship between the intestinal microbiome and systemic omega-3 PUFA exposure.Trial registration numberISRCTN18662143.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ISSN:0017-5749
1468-3288
1468-3288
DOI:10.1136/gutjnl-2017-314968