Integrated approach of an artificial neural network and numerical analysis to multiple equivalent current dipole source localization

The authors have developed a PC-based multichannel electroencephalogram (EEG) measurement and analysis system. This system enables us (1) to simultaneously record a maximum of 64 channels of EEG data, (2) to measure three-dimensional positions of the recording electrodes, (3) to rapidly and precisel...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of medical and biological engineering Vol. 10; no. 4; pp. 285 - 301
Main Authors Takaki, Yoko, Kenmochi, Akihisa, Kiyuna, Tomoharu, Kamijo, Ken'Ichi, Yamazaki, Toshimasa, Tanigawa, Tetsuji
Format Journal Article
LanguageEnglish
Published The Netherlands Brill 2000
VSP
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The authors have developed a PC-based multichannel electroencephalogram (EEG) measurement and analysis system. This system enables us (1) to simultaneously record a maximum of 64 channels of EEG data, (2) to measure three-dimensional positions of the recording electrodes, (3) to rapidly and precisely localize equivalent current dipoles (ECDs) responsible for the EEG data, and (4) to superimpose the localization results on magnetic resonance images. A new neural network and numerical analysis (NNN) approach to ECD localization is described which integrates a feedforward artificial neural network (ANN) and a numerical optimization (Powell's hybrid) method. It was shown that the ANN method has the advantages of high-speed localization and noise robustness, because in this approach: (1) ECD parameters are immediately initialized from the recorded EEG data by the ANN and (2) ECD parameters are accurately refined by the hybrid method. Our multiple ECD localization method was applied to sensory evoked potentials and event-related potentials using the present system.
Bibliography:ark:/67375/JKT-W2TBHN7D-7
istex:3BFC8F44DDB5D97D414E2D408F341ADB4878B603
href:15685578_010_04_s002_text.pdf
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0921-3775
1568-5578
0921-3775
DOI:10.1163/156855700750265468