Using simplified bathymetry and SAR imagery in the validation of a hydraulic model for the Tagus River floodplain
Araújo, M.A.V.C.; Pestana, R.; Matias, M.; Roque, D.; Trigo-Teixeira, A., and Heleno, S., 2016. Using simplified bathymetry and SAR imagery in the validation of a hydraulic model for the Tagus River floodplain. In: Vila-Concejo, A.; Bruce, E.; Kennedy, D.M., and McCarroll, R.J. (eds.), Proceedings o...
Saved in:
Published in | Journal of coastal research Vol. 75; no. sp1; pp. 13 - 17 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Fort Lauderdale
Coastal Education and Research Foundation
01.03.2016
Coastal Education and Research Foundation, Inc Allen Press Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Araújo, M.A.V.C.; Pestana, R.; Matias, M.; Roque, D.; Trigo-Teixeira, A., and Heleno, S., 2016. Using simplified bathymetry and SAR imagery in the validation of a hydraulic model for the Tagus River floodplain. In: Vila-Concejo, A.; Bruce, E.; Kennedy, D.M., and McCarroll, R.J. (eds.), Proceedings of the 14th International Coastal Symposium (Sydney, Australia). Journal of Coastal Research, Special Issue, No. 75, pp. 13 - 17. Coconut Creek (Florida), ISSN 0749-0208. This work presents several approaches in the validation of the hydrodynamic model Tuflow on the simulation of flood extents and water levels, based on satellite SAR imagery. A methodology that uses a simplified bathymetry in the river main course is employed, which proves to be reliable and accurate for high-flow events. This was made possible as the digital terrain model was acquired in a dry period, accounting for large dry areas in the river bed, avoiding in this way the need of expensive river bathymetry surveys. Also, two methods are applied to the SAR imagery to extract the flood boundaries: visual interpretation followed by manual delimitation and an object-based algorithm approach. The hydraulic model is tested on a reach of the Tagus River, Portugal, where the largest flood inundation areas occur, using a historical flood event to verify its robustness and reliability. The accuracy of model prediction is done through comparisons of water levels at a hydrometric station and the determination of commission and omission errors of flood extent, between the reference SAR image and the predicted inundation. It was concluded that the methodology followed in this work is well suited for the hydraulic model validation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0749-0208 1551-5036 |
DOI: | 10.2112/SI75-003.1 |