A Liouville-type theorem for an integral system on a half-space R+n
Let R + n be an n -dimensional upper half Euclidean space, and let α be any real number satisfying 0 < α < n . In our previous paper (Cao and Dai in J. Math. Anal. Appl. 389:1365-1373, 2012), we considered the single equation 0.1 u ( x ) = ∫ R + n ( 1 | x − y | n − α − 1 | x ∗ − y | n − α ) u...
Saved in:
Published in | Journal of inequalities and applications Vol. 2013; no. 1; p. 37 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
04.02.2013
BioMed Central Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1029-242X 1029-242X |
DOI | 10.1186/1029-242X-2013-37 |
Cover
Abstract | Let
R
+
n
be an
n
-dimensional upper half Euclidean space, and let
α
be any real number satisfying
0
<
α
<
n
. In our previous paper (Cao and Dai in J. Math. Anal. Appl. 389:1365-1373, 2012), we considered the single equation
0.1
u
(
x
)
=
∫
R
+
n
(
1
|
x
−
y
|
n
−
α
−
1
|
x
∗
−
y
|
n
−
α
)
u
r
(
y
)
d
y
,
where
x
∗
=
(
x
1
,
…
,
x
n
−
1
,
−
x
n
)
is the reflection of the point
x
about the
∂
R
+
n
. We obtained the monotonicity and nonexistence of positive solutions to equation (
0.1
) under some integrability conditions when
r
>
n
n
−
α
. In (Zhuo and Li in J. Math. Anal. Appl. 381:392-401, 2011), the authors discussed the following system of integral equations in
R
+
n
:
0.2
{
u
(
x
)
=
∫
R
+
n
(
1
|
x
−
y
|
n
−
α
−
1
|
x
∗
−
y
|
n
−
α
)
v
q
(
y
)
d
y
,
v
(
x
)
=
∫
R
+
n
(
1
|
x
−
y
|
n
−
α
−
1
|
x
∗
−
y
|
n
−
α
)
u
p
(
y
)
d
y
with
1
q
+
1
+
1
p
+
1
=
n
−
α
n
. They obtained rotational symmetry of positive solutions of (0.2) about some line parallel to
x
n
-axis under the assumption
u
∈
L
p
+
1
(
R
+
n
)
and
v
∈
L
q
+
1
(
R
+
n
)
. In this paper, we derive nonexistence results of such positive solutions for (0.2). In particular, we present a simple and more general method for the study of symmetry and monotonicity which has been extensively used in various forms on a half-space.
AMS Subject Classification:
35B05, 35B45. |
---|---|
AbstractList | Let
R
+
n
be an
n
-dimensional upper half Euclidean space, and let
α
be any real number satisfying
0
<
α
<
n
. In our previous paper (Cao and Dai in J. Math. Anal. Appl. 389:1365-1373, 2012), we considered the single equation
0.1
u
(
x
)
=
∫
R
+
n
(
1
|
x
−
y
|
n
−
α
−
1
|
x
∗
−
y
|
n
−
α
)
u
r
(
y
)
d
y
,
where
x
∗
=
(
x
1
,
…
,
x
n
−
1
,
−
x
n
)
is the reflection of the point
x
about the
∂
R
+
n
. We obtained the monotonicity and nonexistence of positive solutions to equation (
0.1
) under some integrability conditions when
r
>
n
n
−
α
. In (Zhuo and Li in J. Math. Anal. Appl. 381:392-401, 2011), the authors discussed the following system of integral equations in
R
+
n
:
0.2
{
u
(
x
)
=
∫
R
+
n
(
1
|
x
−
y
|
n
−
α
−
1
|
x
∗
−
y
|
n
−
α
)
v
q
(
y
)
d
y
,
v
(
x
)
=
∫
R
+
n
(
1
|
x
−
y
|
n
−
α
−
1
|
x
∗
−
y
|
n
−
α
)
u
p
(
y
)
d
y
with
1
q
+
1
+
1
p
+
1
=
n
−
α
n
. They obtained rotational symmetry of positive solutions of (0.2) about some line parallel to
x
n
-axis under the assumption
u
∈
L
p
+
1
(
R
+
n
)
and
v
∈
L
q
+
1
(
R
+
n
)
. In this paper, we derive nonexistence results of such positive solutions for (0.2). In particular, we present a simple and more general method for the study of symmetry and monotonicity which has been extensively used in various forms on a half-space.
AMS Subject Classification:
35B05, 35B45. Let R+n be an n-dimensional upper half Euclidean space, and let α be any real number satisfying 0<α<n. In our previous paper (Cao and Dai in J. Math. Anal. Appl. 389:1365-1373, 2012), we considered the single equation u(x)=∫R+n(1|x−y|n−α−1|x∗−y|n−α)ur(y)dy, where x∗=(x1,...,xn−1,−xn) is the reflection of the point x about the ∂R+n. We obtained the monotonicity and nonexistence of positive solutions to equation (0.1) under some integrability conditions when r>nn−α. In (Zhuo and Li in J. Math. Anal. Appl. 381:392-401, 2011), the authors discussed the following system of integral equations in R+n: {u(x)=∫R+n(1|x−y|n−α−1|x∗−y|n−α)vq(y)dy,v(x)=∫R+n(1|x−y|n−α−1|x∗−y|n−α)up(y)dy with 1q+1+1p+1=n−αn. They obtained rotational symmetry of positive solutions of (0.2) about some line parallel to xn-axis under the assumption u∈Lp+1(R+n) and v∈Lq+1(R+n). In this paper, we derive nonexistence results of such positive solutions for (0.2). In particular, we present a simple and more general method for the study of symmetry and monotonicity which has been extensively used in various forms on a half-space.AMS Subject Classification: 35B05, 35B45. |
ArticleNumber | 37 |
Author | Cao, Linfen Dai, Zhaohui |
Author_xml | – sequence: 1 givenname: Linfen surname: Cao fullname: Cao, Linfen email: caolf2010@yahoo.com organization: College of Mathematics and Information Science, Henan Normal University – sequence: 2 givenname: Zhaohui surname: Dai fullname: Dai, Zhaohui organization: Department of Computer Science, Henan Normal University |
BookMark | eNp9kE1LAzEQhoMo2FZ_gLfcJZqP7WZ7LPUTCoIoeAuz2dk2ZZuUZCv037tLVVSkpxlm5nln5h2SYx88EnIh-JUQRX4tuJwwmck3JrlQTOkjMviuHf_IT8kwpRXnUqgiG5DZlM5d2L67pkHW7jZI2yWGiGtah0jBU-dbXERoaNqltisHT4EuoalZ2oBF-nzpz8hJDU3C8884Iq93ty-zBzZ_un-cTeeslEprBhlXmGvIQWOWTYoSZFlVmueq5jiphNW6n7DFuLZYWJS1QjW2FmRWjTmAGpGbvW7pwhori77tDjOb6NYQdyaAM787NqxN_7jpHze9MUbpTkbvZWwMKUWsjXUttC70kGs6wvSW_kuKP-TX7kOM3DOpm_ULjGYVttF3Ph2APgBYzIrY |
CitedBy_id | crossref_primary_10_3934_cpaa_2017082 crossref_primary_10_1155_2014_593210 crossref_primary_10_2140_pjm_2019_299_237 |
Cites_doi | 10.1016/j.jmaa.2010.11.035 10.1016/j.jmaa.2012.01.015 10.1016/j.jmaa.2011.02.060 10.1007/BF03014033 |
ContentType | Journal Article |
Copyright | Cao and Dai; licensee Springer 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Copyright_xml | – notice: Cao and Dai; licensee Springer 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
DBID | C6C AAYXX CITATION |
DOI | 10.1186/1029-242X-2013-37 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1029-242X |
EndPage | 37 |
ExternalDocumentID | oai_biomedcentral_com_1029_242X_2013_37 10_1186_1029_242X_2013_37 |
GroupedDBID | -A0 0R~ 29K 2WC 4.4 40G 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABFTD ABJCF ACACY ACGFO ACGFS ACIPV ACIWK ACUHS ACULB ADBBV ADINQ AENEX AFGXO AFKRA AFPKN AHBYD AHSBF AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS BAPOH BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 D-I DU5 EBLON EBS EJD ESX GROUPED_DOAJ HCIFZ HZ~ IL9 J9A K6V K7- KQ8 L6V M7S M~E O9- OK1 P2P P62 PIMPY PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A ~8M AASML AAYXX AMVHM CITATION OVT PHGZM PHGZT AAYZJ AFNRJ AHBXF |
ID | FETCH-LOGICAL-b2377-a403e67a6a7e4498ba2bdd7063f0e9d1c77403ec85fce8ce2f3e35cca24d50aa3 |
IEDL.DBID | 40G |
ISSN | 1029-242X |
IngestDate | Tue Apr 16 22:43:48 EDT 2024 Tue Jul 01 04:06:03 EDT 2025 Thu Apr 24 23:05:39 EDT 2025 Fri Feb 21 02:32:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Liouville-type theorem systems of integral equations moving planes method monotonicity HLS inequality |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b2377-a403e67a6a7e4498ba2bdd7063f0e9d1c77403ec85fce8ce2f3e35cca24d50aa3 |
OpenAccessLink | https://link.springer.com/10.1186/1029-242X-2013-37 |
PageCount | 1 |
ParticipantIDs | biomedcentral_primary_oai_biomedcentral_com_1029_242X_2013_37 crossref_citationtrail_10_1186_1029_242X_2013_37 crossref_primary_10_1186_1029_242X_2013_37 springer_journals_10_1186_1029_242X_2013_37 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130204 2013-2-4 2013-Feb-4 |
PublicationDateYYYYMMDD | 2013-02-04 |
PublicationDate_xml | – month: 2 year: 2013 text: 20130204 day: 4 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Journal of inequalities and applications |
PublicationTitleAbbrev | J Inequal Appl |
PublicationYear | 2013 |
Publisher | Springer International Publishing BioMed Central Ltd |
Publisher_xml | – name: Springer International Publishing – name: BioMed Central Ltd |
References | Zhuo, Li (CR2) 2011; 381 Cao, Chen (CR5) 2013 Chen, Zhu (CR3) 2011; 377 Boggio (CR4) 1905; 20 Cao, Dai (CR1) 2012; 389 W Chen (481_CR3) 2011; 377 R Zhuo (481_CR2) 2011; 381 L Cao (481_CR5) 2013 T Boggio (481_CR4) 1905; 20 L Cao (481_CR1) 2012; 389 |
References_xml | – volume: 377 start-page: 744 issue: 2 year: 2011 end-page: 753 ident: CR3 article-title: Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems publication-title: J. Math. Anal. Appl doi: 10.1016/j.jmaa.2010.11.035 – volume: 389 start-page: 1365 year: 2012 end-page: 1373 ident: CR1 article-title: A Liouville-type theorem for an integral equation on a half-space publication-title: J. Math. Anal. Appl doi: 10.1016/j.jmaa.2012.01.015 – volume: 381 start-page: 392 year: 2011 end-page: 401 ident: CR2 article-title: A system of integral equations on half space publication-title: J. Math. Anal. Appl doi: 10.1016/j.jmaa.2011.02.060 – year: 2013 ident: CR5 publication-title: Liouville type theorems for poly-harmonic Navier problems. Discrete Contin. Dyn. Syst. – volume: 20 start-page: 97 year: 1905 end-page: 135 ident: CR4 article-title: Sulle Fuzioni di Green d’ordine publication-title: Rend. Circ. Mat. Palermo doi: 10.1007/BF03014033 – volume-title: Liouville type theorems for poly-harmonic Navier problems. Discrete Contin. Dyn. Syst. year: 2013 ident: 481_CR5 – volume: 377 start-page: 744 issue: 2 year: 2011 ident: 481_CR3 publication-title: J. Math. Anal. Appl doi: 10.1016/j.jmaa.2010.11.035 – volume: 381 start-page: 392 year: 2011 ident: 481_CR2 publication-title: J. Math. Anal. Appl doi: 10.1016/j.jmaa.2011.02.060 – volume: 389 start-page: 1365 year: 2012 ident: 481_CR1 publication-title: J. Math. Anal. Appl doi: 10.1016/j.jmaa.2012.01.015 – volume: 20 start-page: 97 year: 1905 ident: 481_CR4 publication-title: Rend. Circ. Mat. Palermo doi: 10.1007/BF03014033 |
SSID | ssj0021384 |
Score | 1.9007888 |
Snippet | Let
R
+
n
be an
n
-dimensional upper half Euclidean space, and let
α
be any real number satisfying
0
<
α
<
n
. In our previous paper (Cao and Dai in J. Math.... Let R+n be an n-dimensional upper half Euclidean space, and let α be any real number satisfying 0<α<n. In our previous paper (Cao and Dai in J. Math. Anal.... |
SourceID | biomedcentral crossref springer |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 37 |
SubjectTerms | Analysis Applications of Mathematics Mathematics Mathematics and Statistics |
Title | A Liouville-type theorem for an integral system on a half-space R+n |
URI | https://link.springer.com/article/10.1186/1029-242X-2013-37 http://dx.doi.org/10.1186/1029-242X-2013-37 |
Volume | 2013 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6veiDH1Nxfow8-OQotEnapA8-lKKO4XxQB3sLaZKiMDuxm3-_SZsOKlPwJaX0jsJdLnfJ5X4HwJX1GrlPqRfkTHhE0cwTSlCPxlTGDMlYVrVVk8doNCXjWThzddxlc9u9SUlWK3Vl1iwyT2RzAWhmFBtgYxjboGvRxGzbAuLfr3dZAWbEpS83sv2obJ-3HVI7G1o5mbsDsOeiQ5jU6jwEW7rogX0XKUJnh2UP7E7WaKvlEUgT-PC2WH3Zsj7PnqnCujzxHZqIFIoCOkyIOaxxm-GigAK-innumfVEavg0LI7B9O72JR15rjmClyFsZCuIj3VERSSoJiRmmUCZUtREHLmvYxVIE9cZCsnCXGomNcqxxqHRFyIq9IXAJ6BTLAp9CqCWthWsxFRlAZFhLIgKFEJCG-MOM6r74KYlMf5RA2FwC03d_mIUxq3EuZU4txLnmPaB30iYS4c8bhtgzHm1A2HRJpbrNUvztz-Ih43auLPA8nfqs39Rn4Odat7Ye9rkAnSWnyt9acKQZTaopt0AdJNk_Dw2bykidozSQbWxN-MUJd_Iudm8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMDAo4AoTw9MVJES24mdgaGqqAq0HVArdbMc2xFIIUWk5fdjJw5SUEFiypA7RfrO5zvnfN8BcGOjRupT6gUpEx5RNPGEEtSjMZUxQzKWZW_VeBINZ-RxHs5dH3dR33avS5LlTl26NYvME9laAJobwwbYOMYm2CKBOQTZCq1tcXCnrAAz4sqXa9V-dLZnzYDUrIaWQWZwAPZcdgh7lTkPwYbO22DfZYrQ-WHRBrvjb7bV4gj0e3D0ulh92rY-z_5ThVV74hs0GSkUOXScEBmseJvhIocCvogs9cx-IjV87ubHYDa4n_aHnhuO4CUIG2wF8bGOqIgE1YTELBEoUYqajCP1dawCafI6IyFZmErNpEYp1jg09kJEhb4Q-AS08kWuTwHU0o6ClZiqJCAyjAVRgUJIaOPcYUJ1B9w1EOPvFREGt9TUzTfGYNwizi3i3CLOMe0Av0aYS8c8bgdgZLw8gbBoncrtt0r9tT-Eu7XZuPPA4nfps39JX4Pt4XQ84qOHydM52CnXkL2zTS5Aa_mx0pcmJVkmV-US_AID5deW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfTBj6k4P_Pgk6PYJmnTPvgwpmPqNkQc7C2kSYpC7Ybd_PtN2nRQmYJPfegdhd_lcpde7ncAXJmokbiUOl4ScodIGjtccurQiIooRCISRW_VcBT0x-Rx4k_snNO8uu1elSTLngbD0pTNb2YyKV08DPQTmboAmmgje1g7yTrYICbymWpt0F2euDwcElvKXKn2o8s9rQenemW0CDi9PbBjM0XYKU27D9ZU1gS7NmuE1ifzJtgeLplX8wPQ7cDB-3TxZVr8HPN_FZatih9QZ6eQZ9DyQ6Sw5HCG0wxy-MbTxNF7i1DwpZ0dgnHv_rXbd-ygBCdGWOPMiYtVQHnAqSIkCmOOYimpzj4SV0XSEzrH0xIi9BOhQqFQghX2te0Qkb7LOT4CjWyaqWMAlTBjYQWmMvaI8CNOpCcR4ko7uh9T1QK3NcTYrCTFYIamuv5GG48ZxJlBnBnEGaYt4FYIM2FZyM0wjJQVp5EwWKVyvVSpvvaHcLsyG7PemP8uffIv6Uuw-XzXY4OH0dMp2CqWkLm-Tc5AY_65UOc6O5nHF8UK_AaoCdvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Liouville-type+theorem+for+an+integral+system+on+a+half-space+R%2Bn&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Cao%2C+Linfen&rft.au=Dai%2C+Zhaohui&rft.date=2013-02-04&rft.pub=Springer+International+Publishing&rft.eissn=1029-242X&rft.volume=2013&rft.issue=1&rft_id=info:doi/10.1186%2F1029-242X-2013-37&rft.externalDocID=10_1186_1029_242X_2013_37 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon |