A Liouville-type theorem for an integral system on a half-space R+n

Let R + n be an n -dimensional upper half Euclidean space, and let α be any real number satisfying 0 < α < n . In our previous paper (Cao and Dai in J. Math. Anal. Appl. 389:1365-1373, 2012), we considered the single equation 0.1 u ( x ) = ∫ R + n ( 1 | x − y | n − α − 1 | x ∗ − y | n − α ) u...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2013; no. 1; p. 37
Main Authors Cao, Linfen, Dai, Zhaohui
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 04.02.2013
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1029-242X
1029-242X
DOI10.1186/1029-242X-2013-37

Cover

Abstract Let R + n be an n -dimensional upper half Euclidean space, and let α be any real number satisfying 0 < α < n . In our previous paper (Cao and Dai in J. Math. Anal. Appl. 389:1365-1373, 2012), we considered the single equation 0.1 u ( x ) = ∫ R + n ( 1 | x − y | n − α − 1 | x ∗ − y | n − α ) u r ( y ) d y , where x ∗ = ( x 1 , … , x n − 1 , − x n ) is the reflection of the point x about the ∂ R + n . We obtained the monotonicity and nonexistence of positive solutions to equation ( 0.1 ) under some integrability conditions when r > n n − α . In (Zhuo and Li in J. Math. Anal. Appl. 381:392-401, 2011), the authors discussed the following system of integral equations in R + n : 0.2 { u ( x ) = ∫ R + n ( 1 | x − y | n − α − 1 | x ∗ − y | n − α ) v q ( y ) d y , v ( x ) = ∫ R + n ( 1 | x − y | n − α − 1 | x ∗ − y | n − α ) u p ( y ) d y with 1 q + 1 + 1 p + 1 = n − α n . They obtained rotational symmetry of positive solutions of (0.2) about some line parallel to x n -axis under the assumption u ∈ L p + 1 ( R + n ) and v ∈ L q + 1 ( R + n ) . In this paper, we derive nonexistence results of such positive solutions for (0.2). In particular, we present a simple and more general method for the study of symmetry and monotonicity which has been extensively used in various forms on a half-space. AMS Subject Classification: 35B05, 35B45.
AbstractList Let R + n be an n -dimensional upper half Euclidean space, and let α be any real number satisfying 0 < α < n . In our previous paper (Cao and Dai in J. Math. Anal. Appl. 389:1365-1373, 2012), we considered the single equation 0.1 u ( x ) = ∫ R + n ( 1 | x − y | n − α − 1 | x ∗ − y | n − α ) u r ( y ) d y , where x ∗ = ( x 1 , … , x n − 1 , − x n ) is the reflection of the point x about the ∂ R + n . We obtained the monotonicity and nonexistence of positive solutions to equation ( 0.1 ) under some integrability conditions when r > n n − α . In (Zhuo and Li in J. Math. Anal. Appl. 381:392-401, 2011), the authors discussed the following system of integral equations in R + n : 0.2 { u ( x ) = ∫ R + n ( 1 | x − y | n − α − 1 | x ∗ − y | n − α ) v q ( y ) d y , v ( x ) = ∫ R + n ( 1 | x − y | n − α − 1 | x ∗ − y | n − α ) u p ( y ) d y with 1 q + 1 + 1 p + 1 = n − α n . They obtained rotational symmetry of positive solutions of (0.2) about some line parallel to x n -axis under the assumption u ∈ L p + 1 ( R + n ) and v ∈ L q + 1 ( R + n ) . In this paper, we derive nonexistence results of such positive solutions for (0.2). In particular, we present a simple and more general method for the study of symmetry and monotonicity which has been extensively used in various forms on a half-space. AMS Subject Classification: 35B05, 35B45.
Let R+n be an n-dimensional upper half Euclidean space, and let α be any real number satisfying 0<α<n. In our previous paper (Cao and Dai in J. Math. Anal. Appl. 389:1365-1373, 2012), we considered the single equation u(x)=∫R+n(1|x−y|n−α−1|x∗−y|n−α)ur(y)dy, where x∗=(x1,...,xn−1,−xn) is the reflection of the point x about the ∂R+n. We obtained the monotonicity and nonexistence of positive solutions to equation (0.1) under some integrability conditions when r>nn−α. In (Zhuo and Li in J. Math. Anal. Appl. 381:392-401, 2011), the authors discussed the following system of integral equations in R+n: {u(x)=∫R+n(1|x−y|n−α−1|x∗−y|n−α)vq(y)dy,v(x)=∫R+n(1|x−y|n−α−1|x∗−y|n−α)up(y)dy with 1q+1+1p+1=n−αn. They obtained rotational symmetry of positive solutions of (0.2) about some line parallel to xn-axis under the assumption u∈Lp+1(R+n) and v∈Lq+1(R+n). In this paper, we derive nonexistence results of such positive solutions for (0.2). In particular, we present a simple and more general method for the study of symmetry and monotonicity which has been extensively used in various forms on a half-space.AMS Subject Classification: 35B05, 35B45.
ArticleNumber 37
Author Cao, Linfen
Dai, Zhaohui
Author_xml – sequence: 1
  givenname: Linfen
  surname: Cao
  fullname: Cao, Linfen
  email: caolf2010@yahoo.com
  organization: College of Mathematics and Information Science, Henan Normal University
– sequence: 2
  givenname: Zhaohui
  surname: Dai
  fullname: Dai, Zhaohui
  organization: Department of Computer Science, Henan Normal University
BookMark eNp9kE1LAzEQhoMo2FZ_gLfcJZqP7WZ7LPUTCoIoeAuz2dk2ZZuUZCv037tLVVSkpxlm5nln5h2SYx88EnIh-JUQRX4tuJwwmck3JrlQTOkjMviuHf_IT8kwpRXnUqgiG5DZlM5d2L67pkHW7jZI2yWGiGtah0jBU-dbXERoaNqltisHT4EuoalZ2oBF-nzpz8hJDU3C8884Iq93ty-zBzZ_un-cTeeslEprBhlXmGvIQWOWTYoSZFlVmueq5jiphNW6n7DFuLZYWJS1QjW2FmRWjTmAGpGbvW7pwhori77tDjOb6NYQdyaAM787NqxN_7jpHze9MUbpTkbvZWwMKUWsjXUttC70kGs6wvSW_kuKP-TX7kOM3DOpm_ULjGYVttF3Ph2APgBYzIrY
CitedBy_id crossref_primary_10_3934_cpaa_2017082
crossref_primary_10_1155_2014_593210
crossref_primary_10_2140_pjm_2019_299_237
Cites_doi 10.1016/j.jmaa.2010.11.035
10.1016/j.jmaa.2012.01.015
10.1016/j.jmaa.2011.02.060
10.1007/BF03014033
ContentType Journal Article
Copyright Cao and Dai; licensee Springer 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright_xml – notice: Cao and Dai; licensee Springer 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DBID C6C
AAYXX
CITATION
DOI 10.1186/1029-242X-2013-37
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1029-242X
EndPage 37
ExternalDocumentID oai_biomedcentral_com_1029_242X_2013_37
10_1186_1029_242X_2013_37
GroupedDBID -A0
0R~
29K
2WC
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABFTD
ABJCF
ACACY
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
D-I
DU5
EBLON
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
HZ~
IL9
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
O9-
OK1
P2P
P62
PIMPY
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
~8M
AASML
AAYXX
AMVHM
CITATION
OVT
PHGZM
PHGZT
AAYZJ
AFNRJ
AHBXF
ID FETCH-LOGICAL-b2377-a403e67a6a7e4498ba2bdd7063f0e9d1c77403ec85fce8ce2f3e35cca24d50aa3
IEDL.DBID 40G
ISSN 1029-242X
IngestDate Tue Apr 16 22:43:48 EDT 2024
Tue Jul 01 04:06:03 EDT 2025
Thu Apr 24 23:05:39 EDT 2025
Fri Feb 21 02:32:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Liouville-type theorem
systems of integral equations
moving planes method
monotonicity
HLS inequality
Language English
License http://creativecommons.org/licenses/by/2.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b2377-a403e67a6a7e4498ba2bdd7063f0e9d1c77403ec85fce8ce2f3e35cca24d50aa3
OpenAccessLink https://link.springer.com/10.1186/1029-242X-2013-37
PageCount 1
ParticipantIDs biomedcentral_primary_oai_biomedcentral_com_1029_242X_2013_37
crossref_citationtrail_10_1186_1029_242X_2013_37
crossref_primary_10_1186_1029_242X_2013_37
springer_journals_10_1186_1029_242X_2013_37
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130204
2013-2-4
2013-Feb-4
PublicationDateYYYYMMDD 2013-02-04
PublicationDate_xml – month: 2
  year: 2013
  text: 20130204
  day: 4
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Journal of inequalities and applications
PublicationTitleAbbrev J Inequal Appl
PublicationYear 2013
Publisher Springer International Publishing
BioMed Central Ltd
Publisher_xml – name: Springer International Publishing
– name: BioMed Central Ltd
References Zhuo, Li (CR2) 2011; 381
Cao, Chen (CR5) 2013
Chen, Zhu (CR3) 2011; 377
Boggio (CR4) 1905; 20
Cao, Dai (CR1) 2012; 389
W Chen (481_CR3) 2011; 377
R Zhuo (481_CR2) 2011; 381
L Cao (481_CR5) 2013
T Boggio (481_CR4) 1905; 20
L Cao (481_CR1) 2012; 389
References_xml – volume: 377
  start-page: 744
  issue: 2
  year: 2011
  end-page: 753
  ident: CR3
  article-title: Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/j.jmaa.2010.11.035
– volume: 389
  start-page: 1365
  year: 2012
  end-page: 1373
  ident: CR1
  article-title: A Liouville-type theorem for an integral equation on a half-space
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/j.jmaa.2012.01.015
– volume: 381
  start-page: 392
  year: 2011
  end-page: 401
  ident: CR2
  article-title: A system of integral equations on half space
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/j.jmaa.2011.02.060
– year: 2013
  ident: CR5
  publication-title: Liouville type theorems for poly-harmonic Navier problems. Discrete Contin. Dyn. Syst.
– volume: 20
  start-page: 97
  year: 1905
  end-page: 135
  ident: CR4
  article-title: Sulle Fuzioni di Green d’ordine
  publication-title: Rend. Circ. Mat. Palermo
  doi: 10.1007/BF03014033
– volume-title: Liouville type theorems for poly-harmonic Navier problems. Discrete Contin. Dyn. Syst.
  year: 2013
  ident: 481_CR5
– volume: 377
  start-page: 744
  issue: 2
  year: 2011
  ident: 481_CR3
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/j.jmaa.2010.11.035
– volume: 381
  start-page: 392
  year: 2011
  ident: 481_CR2
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/j.jmaa.2011.02.060
– volume: 389
  start-page: 1365
  year: 2012
  ident: 481_CR1
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/j.jmaa.2012.01.015
– volume: 20
  start-page: 97
  year: 1905
  ident: 481_CR4
  publication-title: Rend. Circ. Mat. Palermo
  doi: 10.1007/BF03014033
SSID ssj0021384
Score 1.9007888
Snippet Let R + n be an n -dimensional upper half Euclidean space, and let α be any real number satisfying 0 < α < n . In our previous paper (Cao and Dai in J. Math....
Let R+n be an n-dimensional upper half Euclidean space, and let α be any real number satisfying 0<α<n. In our previous paper (Cao and Dai in J. Math. Anal....
SourceID biomedcentral
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms Analysis
Applications of Mathematics
Mathematics
Mathematics and Statistics
Title A Liouville-type theorem for an integral system on a half-space R+n
URI https://link.springer.com/article/10.1186/1029-242X-2013-37
http://dx.doi.org/10.1186/1029-242X-2013-37
Volume 2013
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6veiDH1Nxfow8-OQotEnapA8-lKKO4XxQB3sLaZKiMDuxm3-_SZsOKlPwJaX0jsJdLnfJ5X4HwJX1GrlPqRfkTHhE0cwTSlCPxlTGDMlYVrVVk8doNCXjWThzddxlc9u9SUlWK3Vl1iwyT2RzAWhmFBtgYxjboGvRxGzbAuLfr3dZAWbEpS83sv2obJ-3HVI7G1o5mbsDsOeiQ5jU6jwEW7rogX0XKUJnh2UP7E7WaKvlEUgT-PC2WH3Zsj7PnqnCujzxHZqIFIoCOkyIOaxxm-GigAK-innumfVEavg0LI7B9O72JR15rjmClyFsZCuIj3VERSSoJiRmmUCZUtREHLmvYxVIE9cZCsnCXGomNcqxxqHRFyIq9IXAJ6BTLAp9CqCWthWsxFRlAZFhLIgKFEJCG-MOM6r74KYlMf5RA2FwC03d_mIUxq3EuZU4txLnmPaB30iYS4c8bhtgzHm1A2HRJpbrNUvztz-Ih43auLPA8nfqs39Rn4Odat7Ye9rkAnSWnyt9acKQZTaopt0AdJNk_Dw2bykidozSQbWxN-MUJd_Iudm8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMDAo4AoTw9MVJES24mdgaGqqAq0HVArdbMc2xFIIUWk5fdjJw5SUEFiypA7RfrO5zvnfN8BcGOjRupT6gUpEx5RNPGEEtSjMZUxQzKWZW_VeBINZ-RxHs5dH3dR33avS5LlTl26NYvME9laAJobwwbYOMYm2CKBOQTZCq1tcXCnrAAz4sqXa9V-dLZnzYDUrIaWQWZwAPZcdgh7lTkPwYbO22DfZYrQ-WHRBrvjb7bV4gj0e3D0ulh92rY-z_5ThVV74hs0GSkUOXScEBmseJvhIocCvogs9cx-IjV87ubHYDa4n_aHnhuO4CUIG2wF8bGOqIgE1YTELBEoUYqajCP1dawCafI6IyFZmErNpEYp1jg09kJEhb4Q-AS08kWuTwHU0o6ClZiqJCAyjAVRgUJIaOPcYUJ1B9w1EOPvFREGt9TUzTfGYNwizi3i3CLOMe0Av0aYS8c8bgdgZLw8gbBoncrtt0r9tT-Eu7XZuPPA4nfps39JX4Pt4XQ84qOHydM52CnXkL2zTS5Aa_mx0pcmJVkmV-US_AID5deW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfTBj6k4P_Pgk6PYJmnTPvgwpmPqNkQc7C2kSYpC7Ybd_PtN2nRQmYJPfegdhd_lcpde7ncAXJmokbiUOl4ScodIGjtccurQiIooRCISRW_VcBT0x-Rx4k_snNO8uu1elSTLngbD0pTNb2YyKV08DPQTmboAmmgje1g7yTrYICbymWpt0F2euDwcElvKXKn2o8s9rQenemW0CDi9PbBjM0XYKU27D9ZU1gS7NmuE1ifzJtgeLplX8wPQ7cDB-3TxZVr8HPN_FZatih9QZ6eQZ9DyQ6Sw5HCG0wxy-MbTxNF7i1DwpZ0dgnHv_rXbd-ygBCdGWOPMiYtVQHnAqSIkCmOOYimpzj4SV0XSEzrH0xIi9BOhQqFQghX2te0Qkb7LOT4CjWyaqWMAlTBjYQWmMvaI8CNOpCcR4ko7uh9T1QK3NcTYrCTFYIamuv5GG48ZxJlBnBnEGaYt4FYIM2FZyM0wjJQVp5EwWKVyvVSpvvaHcLsyG7PemP8uffIv6Uuw-XzXY4OH0dMp2CqWkLm-Tc5AY_65UOc6O5nHF8UK_AaoCdvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Liouville-type+theorem+for+an+integral+system+on+a+half-space+R%2Bn&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Cao%2C+Linfen&rft.au=Dai%2C+Zhaohui&rft.date=2013-02-04&rft.pub=Springer+International+Publishing&rft.eissn=1029-242X&rft.volume=2013&rft.issue=1&rft_id=info:doi/10.1186%2F1029-242X-2013-37&rft.externalDocID=10_1186_1029_242X_2013_37
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon