A Liouville-type theorem for an integral system on a half-space R+n
Let R + n be an n -dimensional upper half Euclidean space, and let α be any real number satisfying 0 < α < n . In our previous paper (Cao and Dai in J. Math. Anal. Appl. 389:1365-1373, 2012), we considered the single equation 0.1 u ( x ) = ∫ R + n ( 1 | x − y | n − α − 1 | x ∗ − y | n − α ) u...
Saved in:
Published in | Journal of inequalities and applications Vol. 2013; no. 1; p. 37 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
04.02.2013
BioMed Central Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1029-242X 1029-242X |
DOI | 10.1186/1029-242X-2013-37 |
Cover
Loading…
Summary: | Let
R
+
n
be an
n
-dimensional upper half Euclidean space, and let
α
be any real number satisfying
0
<
α
<
n
. In our previous paper (Cao and Dai in J. Math. Anal. Appl. 389:1365-1373, 2012), we considered the single equation
0.1
u
(
x
)
=
∫
R
+
n
(
1
|
x
−
y
|
n
−
α
−
1
|
x
∗
−
y
|
n
−
α
)
u
r
(
y
)
d
y
,
where
x
∗
=
(
x
1
,
…
,
x
n
−
1
,
−
x
n
)
is the reflection of the point
x
about the
∂
R
+
n
. We obtained the monotonicity and nonexistence of positive solutions to equation (
0.1
) under some integrability conditions when
r
>
n
n
−
α
. In (Zhuo and Li in J. Math. Anal. Appl. 381:392-401, 2011), the authors discussed the following system of integral equations in
R
+
n
:
0.2
{
u
(
x
)
=
∫
R
+
n
(
1
|
x
−
y
|
n
−
α
−
1
|
x
∗
−
y
|
n
−
α
)
v
q
(
y
)
d
y
,
v
(
x
)
=
∫
R
+
n
(
1
|
x
−
y
|
n
−
α
−
1
|
x
∗
−
y
|
n
−
α
)
u
p
(
y
)
d
y
with
1
q
+
1
+
1
p
+
1
=
n
−
α
n
. They obtained rotational symmetry of positive solutions of (0.2) about some line parallel to
x
n
-axis under the assumption
u
∈
L
p
+
1
(
R
+
n
)
and
v
∈
L
q
+
1
(
R
+
n
)
. In this paper, we derive nonexistence results of such positive solutions for (0.2). In particular, we present a simple and more general method for the study of symmetry and monotonicity which has been extensively used in various forms on a half-space.
AMS Subject Classification:
35B05, 35B45. |
---|---|
ISSN: | 1029-242X 1029-242X |
DOI: | 10.1186/1029-242X-2013-37 |