Inter- and Intraspecific Variation in Excited-state Triplet Energy Transfer Rates in Reaction Centers of Photosynthetic Bacteria

In protein–cofactor reaction center (RC) complexes of purple photosynthetic bacteria, the major role of the bound carotenoid (C) is to quench the triplet state formed on the primary electron donor (P) before its sensitization of the excited singlet state of molecular oxygen from its ground triplet s...

Full description

Saved in:
Bibliographic Details
Published inPhotochemistry and photobiology Vol. 78; no. 2; pp. 114 - 123
Main Authors Laible, Philip D., Morris, Zachary S., Thurnauer, Marion C., Schiffer, Marianne, Hanson, Deborah K.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.08.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In protein–cofactor reaction center (RC) complexes of purple photosynthetic bacteria, the major role of the bound carotenoid (C) is to quench the triplet state formed on the primary electron donor (P) before its sensitization of the excited singlet state of molecular oxygen from its ground triplet state. This triplet energy is transferred from P to C via the bacteriochlorophyll monomer BB. Using time-resolved electron paramagnetic resonance (TREPR), we have examined the temperature dependence of the rates of this triplet energy transfer reaction in the RC of three wild-type species of purple nonsulfur bacteria. Species-specific differences in the rate of transfer were observed. Wild-type Rhodobacter capsulatus RCs were less efficient at the triplet transfer reaction than Rhodobacter sphaeroides RCs, but were more efficient than Rhodospirillum rubrum RCs. In addition, RCs from three mutant strains of R. capsulatus carrying substitutions of amino acids near P and BB were examined. Two of the mutant RCs showed decreased triplet transfer rates compared with wild-type RCs, whereas one of the mutant RCs demonstrated a slight increase in triplet transfer rate at low temperatures. The results show that site-specific changes within the RC of R. capsulatus can mimic interspecies differences in the rates of triplet energy transfer. This application of TREPR was instrumental in defining critical energetic and coupling factors that dictate the efficiency of this photoprotective process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-8655
1751-1097
DOI:10.1562/0031-8655(2003)078<0114:IAIVIE>2.0.CO;2