Enhanced Distillation Under Infrared Characteristic Radiation

This chapter introduces quasi-steady water vaporization under mid-infrared (IR) radiation and the IR absorption of characteristic radiation associated with the first-kind liquid-gaseous phase transition of water. When characteristic radiation in the mid-IR spectral range is applied to water surface,...

Full description

Saved in:
Bibliographic Details
Main Author Wang, Kuo-Ting
Format Book Chapter
LanguageEnglish
Published IntechOpen 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This chapter introduces quasi-steady water vaporization under mid-infrared (IR) radiation and the IR absorption of characteristic radiation associated with the first-kind liquid-gaseous phase transition of water. When characteristic radiation in the mid-IR spectral range is applied to water surface, the strong volumetric absorption of radiation energy in the liquid-phase causes water to be nearly isothermal. In addition to volumetric absorption, surface absorption of characteristic radiation induces vaporization of water. The complete mechanism of liquid-gaseous phase-transition radiation involves the direct surface absorption/emission of infrared energy accompanied by evaporation/condensation of water. A direct consequence of excess characteristic radiation upon water surface is the induced supersaturation. This mechanism opens up a door for enhanced distillation under characteristic radiation. Blackbody-like materials such as black anodized aluminum surfaces and metal surfaces painted in black are recommended to be heated to ~250°C to serve as economical radiation sources. For isothermal water at room temperatures, ~20% supersaturation can be induced by hemispherical Blackbody radiation with temperature ~11°C higher than the water temperature. In this situation, energy extracted from the ambient for water vaporization can be as much as 80% of latent heat. With radiation-enhanced evaporation, the production cost for distilled water is significantly reduced as compared to distillation at the boiling point.
Bibliography:MODID-6d55e02e354:IntechOpen
ISBN:9789535132011
9535132016
DOI:10.5772/67401