A benchmarked comparison of software packages for time-lapse image processing of monolayer bacterial population dynamics
Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of bacterial populations, which can exhibit growth and intercellular interactions in monolayer. Such time-lapse imaging typically generates large qu...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
03.12.2023
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2023.11.30.569426 |
Cover
Loading…
Abstract | Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of bacterial populations, which can exhibit growth and intercellular interactions in monolayer. Such time-lapse imaging typically generates large quantities of data, limiting the options for manual investigation. Several of image processing software packages have been developed to facilitate analysis. It can thus be a challenge to identify the software package best suited to a particular research goal. Here, we compare four software packages that support analysis of 2D time-lapse images of cellular populations: CellProfiler, SuperSegger-Omnipose, DeLTA, and FAST. We compare their performance against benchmarked results on time-lapse observations of E. coli populations. Performance varies across the packages, with each of the four out-performing the others in at least one aspect of the analysis. Not surprisingly, the packages that have been in development for longer showed the strongest performance. We found that deep-learning based approaches to object segmentation outperformed traditional approaches, but the opposite was true for frame-to-frame object tracking. We offer these comparisons, together with insight on usability, computational efficiency, and feature availability, as a guide to researchers seeking image processing solutions.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/ingallslab/ImageProcessing-Benchmarking |
---|---|
AbstractList | Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of bacterial populations, which can exhibit growth and intercellular interactions in monolayer. Such time-lapse imaging typically generates large quantities of data, limiting the options for manual investigation. Several of image processing software packages have been developed to facilitate analysis. It can thus be a challenge to identify the software package best suited to a particular research goal. Here, we compare four software packages that support analysis of 2D time-lapse images of cellular populations: CellProfiler, SuperSegger-Omnipose, DeLTA, and FAST. We compare their performance against benchmarked results on time-lapse observations of E. coli populations. Performance varies across the packages, with each of the four out-performing the others in at least one aspect of the analysis. Not surprisingly, the packages that have been in development for longer showed the strongest performance. We found that deep-learning based approaches to object segmentation outperformed traditional approaches, but the opposite was true for frame-to-frame object tracking. We offer these comparisons, together with insight on usability, computational efficiency, and feature availability, as a guide to researchers seeking image processing solutions.
Time-lapse microscopy provides a detailed window into the world of bacterial behavior. However, the vast amount of data produced by these techniques is difficult to analyze manually. We have analysed four software tools designed to process such data and compared their performance, using populations of commonly studied bacterial species as our test subjects. Our findings offer a roadmap to scientists, helping them choose the right tool for their research. This comparison bridges a gap between microbiology and computational analysis, streamlining research efforts. Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of bacterial populations, which can exhibit growth and intercellular interactions in monolayer. Such time-lapse imaging typically generates large quantities of data, limiting the options for manual investigation. Several of image processing software packages have been developed to facilitate analysis. It can thus be a challenge to identify the software package best suited to a particular research goal. Here, we compare four software packages that support analysis of 2D time-lapse images of cellular populations: CellProfiler, SuperSegger-Omnipose, DeLTA, and FAST. We compare their performance against benchmarked results on time-lapse observations of E. coli populations. Performance varies across the packages, with each of the four out-performing the others in at least one aspect of the analysis. Not surprisingly, the packages that have been in development for longer showed the strongest performance. We found that deep-learning based approaches to object segmentation outperformed traditional approaches, but the opposite was true for frame-to-frame object tracking. We offer these comparisons, together with insight on usability, computational efficiency, and feature availability, as a guide to researchers seeking image processing solutions.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/ingallslab/ImageProcessing-Benchmarking |
Author | Ingalls, Brian P Ahmadi, Atiyeh Ren, Carolyn Courtney, Matthew |
Author_xml | – sequence: 1 givenname: Atiyeh surname: Ahmadi fullname: Ahmadi, Atiyeh – sequence: 2 givenname: Matthew surname: Courtney fullname: Courtney, Matthew – sequence: 3 givenname: Carolyn surname: Ren fullname: Ren, Carolyn – sequence: 4 givenname: Brian surname: Ingalls middlename: P fullname: Ingalls, Brian P |
BookMark | eNpNUD1PwzAUtFCRKKU_gM0SC0vKs5M4zlhVfEmVWGCOHPuluE3sYKfQ_ntSlYHpTqd7p3t3TSbOOyTklsGCMWAPHHg6skUKi1yUGRcXZMpFyRPJIZ_841dkHuMWAHgpWFpkU3JY0hqd_uxU2KGh2ne9CjZ6R31Do2-GHxWQ9krv1AYjbXygg-0waVUfkdpuVGkfvMYYrducjjrvfKuOGGit9IDBqpb2vt-3arBjrDk61Vkdb8hlo9qI8z-ckY-nx_fVS7J-e35dLddJzSATCTamMFKLOi9EzrlkiIXMBORMc1OmTKNGkdUgTKMZh0YZI7OaS6NZDkLxdEbuz7m19eFgv6s-jK3DsTqNVjFWpVCdRxutd2fr-NDXHuNQbf0-uLFdxWUpBAhRyvQXDydwGQ |
ContentType | Paper |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2023.11.30.569426 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Proquest-Biological Science ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2023.11.30.569426v1 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b1046-efd7d8c6b57652281ee7846051c2d931cece64b06dfc120fadd84b28dc1506a23 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:52:27 EST 2025 Fri Jul 25 09:12:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | image processing microbiology time-lapse imaging segmentation tracking |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1046-efd7d8c6b57652281ee7846051c2d931cece64b06dfc120fadd84b28dc1506a23 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0003-2118-3881 0000-0002-9249-7397 0000-0002-2303-6730 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2023.11.30.569426 |
PQID | 2896606698 |
PQPubID | 2050091 |
PageCount | 9 |
ParticipantIDs | biorxiv_primary_2023_11_30_569426 proquest_journals_2896606698 |
PublicationCentury | 2000 |
PublicationDate | 20231203 |
PublicationDateYYYYMMDD | 2023-12-03 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231203 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2023 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Moffitt, Lee, Cluzel (2023.11.30.569426v1.3) 2012; 12 Cutler (2023.11.30.569426v1.32) 2022; 19 Tinevez (2023.11.30.569426v1.15) 2017; 115 Vliet, Hauert, Fridberg, Ackermann, Dal Co (2023.11.30.569426v1.18) 2022; 18 Ronneberger, Fischer, Brox (2023.11.30.569426v1.39) 2015 Kim (2023.11.30.569426v1.7) 2019; 15 Lugagne, Lin, Dunlop (2023.11.30.569426v1.22) 2020; 16 Specht, Braselmann, Palmer (2023.11.30.569426v1.1) 2017; 79 Litjens (2023.11.30.569426v1.50) 2017; 42 Goñi-Moreno, Lorenzo (2023.11.30.569426v1.27) 2017; 12 LeCun, Bengio, Hinton (2023.11.30.569426v1.49) 2015; 521 Gupta (2023.11.30.569426v1.9) 2020; 11 McQuin (2023.11.30.569426v1.20) 2018; 16 Locke, Elowitz (2023.11.30.569426v1.2) 2009; 7 Massalha, Korenblum, Malitsky, Shapiro, Aharoni (2023.11.30.569426v1.6) 2017; 114 Stylianidou, Brennan, Nissen, Kuwada, Wiggins (2023.11.30.569426v1.21) 2016; 102 Jeckel, Drescher (2023.11.30.569426v1.11) 2021; 45 Karhohs (2023.11.30.569426v1.35) 2017 Raaphorst, Kjos, Veening (2023.11.30.569426v1.26) 2020; 113 Krizhevsky, Sutskever, Hinton (2023.11.30.569426v1.52) 2017; 60 Karimi, Dou, Warfield, Gholipour (2023.11.30.569426v1.46) 2020; 65 Stirling, Carpenter, Cimini (2023.11.30.569426v1.31) 2021; 37 (2023.11.30.569426v1.33) 2022 Kelleher (2023.11.30.569426v1.51) 2019 Abrámoff, Magalhaãs, Ram (2023.11.30.569426v1.42) 2004; 11 Carpenter (2023.11.30.569426v1.19) 2006; 7 Brajtenbach (2023.11.30.569426v1.30) 2022 Armi, Fekri-Ershad (2023.11.30.569426v1.37) 2019 Kaiser (2023.11.30.569426v1.14) 2018; 9 Co, Vliet, Ackermann (2023.11.30.569426v1.44) 2019; 374 Meacock (2023.11.30.569426v1.34) 2021 Sibarita (2023.11.30.569426v1.48) 2005 Lu, She, Tie, Xu (2023.11.30.569426v1.38) 2022; 16 Berg (2023.11.30.569426v1.43) 2019; 16 Stringer, Wang, Michaelos, Pachitariu (2023.11.30.569426v1.41) 2021; 18 Smith, Metz, Pagliara (2023.11.30.569426v1.13) 2019; 9 Stephens, Bentley (2023.11.30.569426v1.8) 2020; 28 Meacock, Durham (2023.11.30.569426v1.24) 2021 Cutler, Stringer, Wiggins, Mougous (2023.11.30.569426v1.36) 2021 Sauls (2023.11.30.569426v1.12) 2019 Matula (2023.11.30.569426v1.45) 2015; 10 Mayer, Dimopoulos, Rudolf, Stelling (2023.11.30.569426v1.25) 2013; 101 Goodfellow, Bengio, Courville (2023.11.30.569426v1.53) 2016 Hartmann, van Teeseling, Thanbichler, Drescher (2023.11.30.569426v1.16) 2020; 114 Paintdakhi (2023.11.30.569426v1.28) 2016; 99 Schmidhuber (2023.11.30.569426v1.54) 2015; 61 Leygeber (2023.11.30.569426v1.10) 2019; 431 O’Connor, Alnahhas, Lugagne, Dunlop (2023.11.30.569426v1.23) 2022; 18 Hol, Voges, Dekker, Keymer (2023.11.30.569426v1.4) 2014; 12 Falk (2023.11.30.569426v1.40) 2019; 16 Anam (2023.11.30.569426v1.47) 2020; 10 Chen, Kim, Hirning, Josić, Bennett (2023.11.30.569426v1.5) 2015; 349 Marini (2023.11.30.569426v1.17) 2003 Balomenos (2023.11.30.569426v1.29) 2017; 11 |
References_xml | – start-page: 234 year: 2015 end-page: 241 ident: 2023.11.30.569426v1.39 publication-title: U-net: Convolutional networks for biomedical image segmentation in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 – year: 2019 ident: 2023.11.30.569426v1.37 article-title: Texture image analysis and texture classification methods-a review publication-title: arXiv preprint – year: 2021 ident: 2023.11.30.569426v1.34 publication-title: Oiver a Durham – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: 2023.11.30.569426v1.52 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – volume: 18 start-page: e1009877 year: 2022 ident: 2023.11.30.569426v1.18 article-title: Global dynamics of microbial communities emerge from local interaction rules publication-title: PLoS computational biology – volume: 18 start-page: e1009797 year: 2022 ident: 2023.11.30.569426v1.23 article-title: Delta 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics publication-title: PLOS Comput. Biol – year: 2022 ident: 2023.11.30.569426v1.33 – volume: 115 start-page: 80 year: 2017 end-page: 90 ident: 2023.11.30.569426v1.15 article-title: Trackmate: An open and extensible platform for single-particle tracking publication-title: Methods – volume: 79 start-page: 93 year: 2017 end-page: 117 ident: 2023.11.30.569426v1.1 article-title: A critical and comparative review of fluorescent tools for live-cell imaging publication-title: Annu. review physiology – year: 2017 ident: 2023.11.30.569426v1.35 – volume: 16 start-page: 911679 year: 2022 ident: 2023.11.30.569426v1.38 article-title: Half-unet: A simplified u-net architecture for medical image segmentation publication-title: Front. Neuroinformatics – volume: 102 start-page: 690 year: 2016 end-page: 700 ident: 2023.11.30.569426v1.21 article-title: Supersegger: robust image segmentation, analysis and lineage tracking of bacterial cells publication-title: Mol. microbiology – volume: 65 start-page: 101759 year: 2020 ident: 2023.11.30.569426v1.46 article-title: Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis publication-title: Med. image analysis – start-page: 201 year: 2005 end-page: 243 ident: 2023.11.30.569426v1.48 article-title: Deconvolution microscopy publication-title: Microsc. Tech. -/- – volume: 431 start-page: 4569 year: 2019 end-page: 4588 ident: 2023.11.30.569426v1.10 article-title: Analyzing microbial population heterogeneity—expanding the toolbox of microfluidic single-cell cultivations publication-title: J. molecular biology – volume: 99 start-page: 767 year: 2016 end-page: 777 ident: 2023.11.30.569426v1.28 article-title: Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis publication-title: Mol. microbiology – volume: 7 start-page: 383 year: 2009 end-page: 392 ident: 2023.11.30.569426v1.2 article-title: Using movies to analyse gene circuit dynamics in single cells publication-title: Nat. Rev. Microbiol – volume: 11 start-page: 36 year: 2004 end-page: 42 ident: 2023.11.30.569426v1.42 article-title: Image processing with imagej publication-title: Biophotonics international – volume: 45 start-page: fuaa062 year: 2021 ident: 2023.11.30.569426v1.11 article-title: Advances and opportunities in image analysis of bacterial cells and communities publication-title: FEMS Microbiol. Rev – volume: 10 start-page: e0144959 year: 2015 ident: 2023.11.30.569426v1.45 article-title: Cell tracking accuracy measurement based on comparison of acyclic oriented graphs publication-title: PloS one – volume: 114 start-page: 4549 year: 2017 end-page: 4554 ident: 2023.11.30.569426v1.6 article-title: Live imaging of root–bacteria interactions in a microfluidics setup publication-title: Proc. Natl. Acad. Sci – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: 2023.11.30.569426v1.49 article-title: Deep learning publication-title: nature – year: 2016 ident: 2023.11.30.569426v1.53 publication-title: Deep learning – volume: 16 start-page: e1007673 year: 2020 ident: 2023.11.30.569426v1.22 article-title: Delta: Automated cell segmentation, tracking, and lineage reconstruction using deep learning publication-title: PLoS computational biology – volume: 12 start-page: 1487 year: 2012 end-page: 1494 ident: 2023.11.30.569426v1.3 article-title: The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities publication-title: Lab on a Chip – volume: 15 start-page: 1102 year: 2019 end-page: 1109 ident: 2023.11.30.569426v1.7 article-title: Long-range temporal coordination of gene expression in synthetic microbial consortia publication-title: Nat. chemical biology – volume: 349 start-page: 986 year: 2015 end-page: 989 ident: 2023.11.30.569426v1.5 article-title: Emergent genetic oscillations in a synthetic microbial consortium publication-title: Science – volume: 18 start-page: 100 year: 2021 end-page: 106 ident: 2023.11.30.569426v1.41 article-title: Cellpose: a generalist algorithm for cellular segmentation publication-title: Nat. methods – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: 2023.11.30.569426v1.50 article-title: A survey on deep learning in medical image analysis publication-title: Med. image analysis – year: 2021 ident: 2023.11.30.569426v1.24 article-title: Tracking bacteria at high density with fast, the feature-assisted segmenter/tracker publication-title: bioRxiv – volume: 16 start-page: 1226 year: 2019 end-page: 1232 ident: 2023.11.30.569426v1.43 article-title: Ilastik: interactive machine learning for (bio) image analysis publication-title: Nat. Methods – volume: 37 start-page: 3992 year: 2021 end-page: 3994 ident: 2023.11.30.569426v1.31 article-title: Cellprofiler analyst 3.0: accessible data exploration and machine learning for image analysis publication-title: Bioinformatics – volume: 12 start-page: 1600323 year: 2017 ident: 2023.11.30.569426v1.27 article-title: Cellshape: A user-friendly image analysis tool for quantitative visualization of bacterial cell factories inside publication-title: Biotechnol. J – volume: 101 start-page: 14 year: 2013 end-page: 22 ident: 2023.11.30.569426v1.25 article-title: Using cellx to quantify intracellular events publication-title: Curr. protocols molecular biology – volume: 28 start-page: 633 year: 2020 end-page: 643 ident: 2023.11.30.569426v1.8 article-title: Synthetic biology for manipulating quorum sensing in microbial consortia publication-title: Trends microbiology – volume: 16 start-page: 67 year: 2019 end-page: 70 ident: 2023.11.30.569426v1.40 article-title: U-net: deep learning for cell counting, detection, and morphometry publication-title: Nat. methods – volume: 114 start-page: 140 year: 2020 end-page: 150 ident: 2023.11.30.569426v1.16 article-title: Bacstalk: a comprehensive and interactive image analysis software tool for bacterial cell biology publication-title: Mol. microbiology – volume: 16 start-page: e2005970 year: 2018 ident: 2023.11.30.569426v1.20 article-title: Cellprofiler 3.0: Next-generation image processing for biology publication-title: PLoS biology – volume: 11 start-page: 1 year: 2020 end-page: 15 ident: 2023.11.30.569426v1.9 article-title: Investigating the dynamics of microbial consortia in spatially structured environments publication-title: Nat. communications – volume: 10 start-page: 623 year: 2020 ident: 2023.11.30.569426v1.47 article-title: Noise reduction in ct images using a selective mean filter publication-title: J. biomedical physics & engineering – volume: 113 start-page: 297 year: 2020 end-page: 308 ident: 2023.11.30.569426v1.26 article-title: Bactmap: An r package for integrating, analyzing and visualizing bacterial microscopy data publication-title: Mol. microbiology – volume: 9 start-page: 1 year: 2018 end-page: 16 ident: 2023.11.30.569426v1.14 article-title: Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software publication-title: Nat. communications – volume: 7 start-page: 1 year: 2006 end-page: 11 ident: 2023.11.30.569426v1.19 article-title: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome biology – year: 2003 ident: 2023.11.30.569426v1.17 – year: 2019 ident: 2023.11.30.569426v1.51 publication-title: Deep learning – volume: 374 start-page: 20190080 year: 2019 ident: 2023.11.30.569426v1.44 article-title: Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations publication-title: Philos. Transactions Royal Soc. B – volume: 9 start-page: 1 year: 2019 end-page: 12 ident: 2023.11.30.569426v1.13 article-title: Mmhelper: An automated framework for the analysis of microscopy images acquired with the mother machine publication-title: Sci. reports – volume: 12 start-page: 1 year: 2014 end-page: 14 ident: 2023.11.30.569426v1.4 article-title: Nutrient-responsive regulation determines biodiversity in a colicin-mediated bacterial community publication-title: BMC biology – volume: 11 start-page: 1 year: 2017 end-page: 21 ident: 2023.11.30.569426v1.29 article-title: Image analysis driven single-cell analytics for systems microbiology publication-title: BMC systems biology – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: 2023.11.30.569426v1.54 article-title: Deep learning in neural networks: An overview publication-title: Neural networks – year: 2021 ident: 2023.11.30.569426v1.36 article-title: Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation publication-title: bioRxiv – start-page: 810036 year: 2019 ident: 2023.11.30.569426v1.12 article-title: Mother machine image analysis with mm3 publication-title: bioRxiv – start-page: 231 year: 2022 end-page: 257 ident: 2023.11.30.569426v1.30 publication-title: Quantitative analysis of microscopy data to evaluate bacterial responses to antibiotic treatment in Antibiotics: Methods and Protocols – volume: 19 start-page: 1438 year: 2022 end-page: 1448 ident: 2023.11.30.569426v1.32 article-title: Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation publication-title: Nat. methods |
SSID | ssj0002961374 |
Score | 1.7092696 |
SecondaryResourceType | preprint |
Snippet | Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Image processing Microbiology Population dynamics Software Software packages |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60peDNJ1arrOA1Nbt5NDmJSksRLEUs9BYyuxsstk1MqtZ_70yS1oPgLSQkkNndb97zMXat4lB5CRC5i5dYrhSOBT2ILQkipj5M5ZXtYk8jfzhxH6fetA64FXVZ5QYTS6DWqaIY-Q06Bj4Z22Fwm71bxBpF2dWaQmOXNRGCA6_Bmvf90fh5G2WRIaqrchSz9EM8-tL26tQmbkVy_B286jp21_NDlwYstGCW5uvZ5x9oLvXNYJ81x3Fm8gO2Y5aHrFURRn4fsfUdB9xWrwsqqtFcbUkEeZrwAhH1K84NRzf4DWGi4GiQciKPt-ZxVhg-W-BdnlWtAaiy6CX8LXRu0e7mUM1tjuc825J6cV0R1hfHbDLovzwMrZo7wQLK2lom0T0dKB_Qn0ATKxDG9ALKgQoldegIZZTxXbB9nSgh7QRhLnBBBlrRyMFYOiessUyX5pRxBwDVGwQ0KMcFIwASDwRIAyGEiBFtdlULLcqqCRkRCRZ9i8ixo0qwbdbZiDOqD0kR_S7p2f-Pz9kefbGsInE6rLHKP8wF2gIruKwX_AcqN7Or priority: 102 providerName: ProQuest |
Title | A benchmarked comparison of software packages for time-lapse image processing of monolayer bacterial population dynamics |
URI | https://www.proquest.com/docview/2896606698 https://www.biorxiv.org/content/10.1101/2023.11.30.569426 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfDmEx-1rOA1Jbub51GlpQiWIhZ6CzubDRb7CEnV-u-dSWIR9OAtLOwGJrvzzZeZnY-xG6Nj42dA4i5-5nhSKAdC0I4EoekepvGr62KPo2A48R6m_vSH1BeVVcJsVWxm71Uenwq20fvWh9sVxNUVPvWU2_ODGOFll7WpxxlVcw2mve3vFRkjToVek8f8cyZGvM2bfvnhClwGB6w91rktDtmOXR6xvVod8vOYbW454B56WVAFTcrNVjGQrzJeovv80IXlyHlf0SeUHKNPTkrxzlznpeWzBY7yvL4HgPhEk3DLIZPFIJtD3aRZz3m-VfDiaa1OX56wyaD_fD90GqEEByhF69gsDdPIBIDkAeOpSFgbRpTwFEamsRLGGht44AZpZoR0M_RpkQcySg31F9RSnbLWcrW0Z4wrAMQyiKgrjgdWAGQ-CJAWYojRIZyz68ZoSV63w0jIsEgkEuUmtWHPWefbnElzIsoEiV1AZCmOLv6xxCXbp7GqbkR1WGtdvNkrRP81dFn7rj8aP3Wr7_0FoBWtvA |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF7EInrziW9X0GNqsnk0exDxSX20FKngLe5sNli0bWyqtX_K3-hMktaD4M1bSEgOk9lvZnZ2vo-xA62k9hMgcRc_sTzhuBbUQFkCHEVzmNrPx8UazaD-4N08-o8z7GsyC0PHKieYmAN13Ne0R36EhUFAybYMT9I3i1SjqLs6kdAo3OLWjEdYsmXH1xf4fw-FuLpsn9etUlXAAupnWiaJa3GoA8BMG5OP0DGmFlJ30NEilq6jjTaBB3YQJ9oRdoIAEHogwlgTGZ8iogOE_AqmGRJXUeXsstm6n-7qCInhMad-FoFEqBG2X7ZS0fVpo8HFq6prV_1AekToMAed_uCz8_ErFOTx7WqRVVoqNYMlNmN6y2yuEKgcr7DPUw7oxs9dOsQTcz0VLeT9hGeI4CM1MBzL7heEpYxjAsxJrN56VWlmeKeLd3lajCJgiKSX0IxYTGOez6HgiVavPJ2KiPF43FPdjs5W2cO_WHWNzfb6PbPOuAuA4RRCIubxwDgAiQ8OCAMSJGLSBtsvjRalBSNHRIbFWiZy7agw7AbbnpgzKhdlFv240Obfj_fYfL3duIvurpu3W2yBvp6fYHG32exw8G52MA8Zwm758zl7-m9_-wZdM_CI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfHmE6tVV_CakN28j6IWn6UHC72Fnc0Gi32EpGr9984ksQh68BY2ZBcmuzPz7Tw-xi60irWfAZG7-JnlSeFaEIKyJAhFdZjar8rFnvrB7dC7H_mjH7UwlFYJ43mxHL9XcXxK2EbtWx9uRxBWd_HJdh3bD2I0LzZdU9t5mq2zNjU7IwDWG9mrexYZo8EKvSag-ecU6Po2S_5SyJWV6W2z9kDlpthha2a2yzZqmsjPPba85ICb6WVKqTQp1yvqQD7PeIl69EMVhiP4fUXlUHJ0QzlRxlsTlZeGj6c4yvO6IAANFX2Eew8hLXrbHOpuzWrC8xWVF09rmvpynw17N89Xt1bDmGABxWotk6VhGukAEEWgYxUJY8KIIp9CyzR2hTbaBB44QZppIZ0MlVvkgYxSTY0GlXQPWGs2n5lDxl0ANGoQUXscD4wAyHwQIA3EEKNm6LDzRmhJXvfFSEiwiCgS10lqwXZY91ucSXM0ygQRXkCoKY6O_jHFGdscXPeSx7v-wzHbotdVLonbZa1F8WZO0CNYwGn1y78AesOyAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+benchmarked+comparison+of+software+packages+for+time-lapse+image+processing+of+monolayer+bacterial+population+dynamics&rft.jtitle=bioRxiv&rft.au=Ahmadi%2C+Atiyeh&rft.au=Courtney%2C+Matthew&rft.au=Ren%2C+Carolyn&rft.au=Ingalls%2C+Brian&rft.date=2023-12-03&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.11.30.569426&rft.externalDocID=2023.11.30.569426v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |