A benchmarked comparison of software packages for time-lapse image processing of monolayer bacterial population dynamics

Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of bacterial populations, which can exhibit growth and intercellular interactions in monolayer. Such time-lapse imaging typically generates large qu...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Ahmadi, Atiyeh, Courtney, Matthew, Ren, Carolyn, Ingalls, Brian P
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 03.12.2023
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2023.11.30.569426

Cover

Loading…
Abstract Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of bacterial populations, which can exhibit growth and intercellular interactions in monolayer. Such time-lapse imaging typically generates large quantities of data, limiting the options for manual investigation. Several of image processing software packages have been developed to facilitate analysis. It can thus be a challenge to identify the software package best suited to a particular research goal. Here, we compare four software packages that support analysis of 2D time-lapse images of cellular populations: CellProfiler, SuperSegger-Omnipose, DeLTA, and FAST. We compare their performance against benchmarked results on time-lapse observations of E. coli populations. Performance varies across the packages, with each of the four out-performing the others in at least one aspect of the analysis. Not surprisingly, the packages that have been in development for longer showed the strongest performance. We found that deep-learning based approaches to object segmentation outperformed traditional approaches, but the opposite was true for frame-to-frame object tracking. We offer these comparisons, together with insight on usability, computational efficiency, and feature availability, as a guide to researchers seeking image processing solutions.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/ingallslab/ImageProcessing-Benchmarking
AbstractList Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of bacterial populations, which can exhibit growth and intercellular interactions in monolayer. Such time-lapse imaging typically generates large quantities of data, limiting the options for manual investigation. Several of image processing software packages have been developed to facilitate analysis. It can thus be a challenge to identify the software package best suited to a particular research goal. Here, we compare four software packages that support analysis of 2D time-lapse images of cellular populations: CellProfiler, SuperSegger-Omnipose, DeLTA, and FAST. We compare their performance against benchmarked results on time-lapse observations of E. coli populations. Performance varies across the packages, with each of the four out-performing the others in at least one aspect of the analysis. Not surprisingly, the packages that have been in development for longer showed the strongest performance. We found that deep-learning based approaches to object segmentation outperformed traditional approaches, but the opposite was true for frame-to-frame object tracking. We offer these comparisons, together with insight on usability, computational efficiency, and feature availability, as a guide to researchers seeking image processing solutions. Time-lapse microscopy provides a detailed window into the world of bacterial behavior. However, the vast amount of data produced by these techniques is difficult to analyze manually. We have analysed four software tools designed to process such data and compared their performance, using populations of commonly studied bacterial species as our test subjects. Our findings offer a roadmap to scientists, helping them choose the right tool for their research. This comparison bridges a gap between microbiology and computational analysis, streamlining research efforts.
Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of bacterial populations, which can exhibit growth and intercellular interactions in monolayer. Such time-lapse imaging typically generates large quantities of data, limiting the options for manual investigation. Several of image processing software packages have been developed to facilitate analysis. It can thus be a challenge to identify the software package best suited to a particular research goal. Here, we compare four software packages that support analysis of 2D time-lapse images of cellular populations: CellProfiler, SuperSegger-Omnipose, DeLTA, and FAST. We compare their performance against benchmarked results on time-lapse observations of E. coli populations. Performance varies across the packages, with each of the four out-performing the others in at least one aspect of the analysis. Not surprisingly, the packages that have been in development for longer showed the strongest performance. We found that deep-learning based approaches to object segmentation outperformed traditional approaches, but the opposite was true for frame-to-frame object tracking. We offer these comparisons, together with insight on usability, computational efficiency, and feature availability, as a guide to researchers seeking image processing solutions.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/ingallslab/ImageProcessing-Benchmarking
Author Ingalls, Brian P
Ahmadi, Atiyeh
Ren, Carolyn
Courtney, Matthew
Author_xml – sequence: 1
  givenname: Atiyeh
  surname: Ahmadi
  fullname: Ahmadi, Atiyeh
– sequence: 2
  givenname: Matthew
  surname: Courtney
  fullname: Courtney, Matthew
– sequence: 3
  givenname: Carolyn
  surname: Ren
  fullname: Ren, Carolyn
– sequence: 4
  givenname: Brian
  surname: Ingalls
  middlename: P
  fullname: Ingalls, Brian P
BookMark eNpNUD1PwzAUtFCRKKU_gM0SC0vKs5M4zlhVfEmVWGCOHPuluE3sYKfQ_ntSlYHpTqd7p3t3TSbOOyTklsGCMWAPHHg6skUKi1yUGRcXZMpFyRPJIZ_841dkHuMWAHgpWFpkU3JY0hqd_uxU2KGh2ne9CjZ6R31Do2-GHxWQ9krv1AYjbXygg-0waVUfkdpuVGkfvMYYrducjjrvfKuOGGit9IDBqpb2vt-3arBjrDk61Vkdb8hlo9qI8z-ckY-nx_fVS7J-e35dLddJzSATCTamMFKLOi9EzrlkiIXMBORMc1OmTKNGkdUgTKMZh0YZI7OaS6NZDkLxdEbuz7m19eFgv6s-jK3DsTqNVjFWpVCdRxutd2fr-NDXHuNQbf0-uLFdxWUpBAhRyvQXDydwGQ
ContentType Paper
Copyright 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2023.11.30.569426
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Proquest-Biological Science
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2023.11.30.569426v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1046-efd7d8c6b57652281ee7846051c2d931cece64b06dfc120fadd84b28dc1506a23
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:52:27 EST 2025
Fri Jul 25 09:12:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords image processing
microbiology
time-lapse imaging
segmentation
tracking
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1046-efd7d8c6b57652281ee7846051c2d931cece64b06dfc120fadd84b28dc1506a23
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0003-2118-3881
0000-0002-9249-7397
0000-0002-2303-6730
OpenAccessLink https://www.biorxiv.org/content/10.1101/2023.11.30.569426
PQID 2896606698
PQPubID 2050091
PageCount 9
ParticipantIDs biorxiv_primary_2023_11_30_569426
proquest_journals_2896606698
PublicationCentury 2000
PublicationDate 20231203
PublicationDateYYYYMMDD 2023-12-03
PublicationDate_xml – month: 12
  year: 2023
  text: 20231203
  day: 03
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2023
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Moffitt, Lee, Cluzel (2023.11.30.569426v1.3) 2012; 12
Cutler (2023.11.30.569426v1.32) 2022; 19
Tinevez (2023.11.30.569426v1.15) 2017; 115
Vliet, Hauert, Fridberg, Ackermann, Dal Co (2023.11.30.569426v1.18) 2022; 18
Ronneberger, Fischer, Brox (2023.11.30.569426v1.39) 2015
Kim (2023.11.30.569426v1.7) 2019; 15
Lugagne, Lin, Dunlop (2023.11.30.569426v1.22) 2020; 16
Specht, Braselmann, Palmer (2023.11.30.569426v1.1) 2017; 79
Litjens (2023.11.30.569426v1.50) 2017; 42
Goñi-Moreno, Lorenzo (2023.11.30.569426v1.27) 2017; 12
LeCun, Bengio, Hinton (2023.11.30.569426v1.49) 2015; 521
Gupta (2023.11.30.569426v1.9) 2020; 11
McQuin (2023.11.30.569426v1.20) 2018; 16
Locke, Elowitz (2023.11.30.569426v1.2) 2009; 7
Massalha, Korenblum, Malitsky, Shapiro, Aharoni (2023.11.30.569426v1.6) 2017; 114
Stylianidou, Brennan, Nissen, Kuwada, Wiggins (2023.11.30.569426v1.21) 2016; 102
Jeckel, Drescher (2023.11.30.569426v1.11) 2021; 45
Karhohs (2023.11.30.569426v1.35) 2017
Raaphorst, Kjos, Veening (2023.11.30.569426v1.26) 2020; 113
Krizhevsky, Sutskever, Hinton (2023.11.30.569426v1.52) 2017; 60
Karimi, Dou, Warfield, Gholipour (2023.11.30.569426v1.46) 2020; 65
Stirling, Carpenter, Cimini (2023.11.30.569426v1.31) 2021; 37
(2023.11.30.569426v1.33) 2022
Kelleher (2023.11.30.569426v1.51) 2019
Abrámoff, Magalhaãs, Ram (2023.11.30.569426v1.42) 2004; 11
Carpenter (2023.11.30.569426v1.19) 2006; 7
Brajtenbach (2023.11.30.569426v1.30) 2022
Armi, Fekri-Ershad (2023.11.30.569426v1.37) 2019
Kaiser (2023.11.30.569426v1.14) 2018; 9
Co, Vliet, Ackermann (2023.11.30.569426v1.44) 2019; 374
Meacock (2023.11.30.569426v1.34) 2021
Sibarita (2023.11.30.569426v1.48) 2005
Lu, She, Tie, Xu (2023.11.30.569426v1.38) 2022; 16
Berg (2023.11.30.569426v1.43) 2019; 16
Stringer, Wang, Michaelos, Pachitariu (2023.11.30.569426v1.41) 2021; 18
Smith, Metz, Pagliara (2023.11.30.569426v1.13) 2019; 9
Stephens, Bentley (2023.11.30.569426v1.8) 2020; 28
Meacock, Durham (2023.11.30.569426v1.24) 2021
Cutler, Stringer, Wiggins, Mougous (2023.11.30.569426v1.36) 2021
Sauls (2023.11.30.569426v1.12) 2019
Matula (2023.11.30.569426v1.45) 2015; 10
Mayer, Dimopoulos, Rudolf, Stelling (2023.11.30.569426v1.25) 2013; 101
Goodfellow, Bengio, Courville (2023.11.30.569426v1.53) 2016
Hartmann, van Teeseling, Thanbichler, Drescher (2023.11.30.569426v1.16) 2020; 114
Paintdakhi (2023.11.30.569426v1.28) 2016; 99
Schmidhuber (2023.11.30.569426v1.54) 2015; 61
Leygeber (2023.11.30.569426v1.10) 2019; 431
O’Connor, Alnahhas, Lugagne, Dunlop (2023.11.30.569426v1.23) 2022; 18
Hol, Voges, Dekker, Keymer (2023.11.30.569426v1.4) 2014; 12
Falk (2023.11.30.569426v1.40) 2019; 16
Anam (2023.11.30.569426v1.47) 2020; 10
Chen, Kim, Hirning, Josić, Bennett (2023.11.30.569426v1.5) 2015; 349
Marini (2023.11.30.569426v1.17) 2003
Balomenos (2023.11.30.569426v1.29) 2017; 11
References_xml – start-page: 234
  year: 2015
  end-page: 241
  ident: 2023.11.30.569426v1.39
  publication-title: U-net: Convolutional networks for biomedical image segmentation in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18
– year: 2019
  ident: 2023.11.30.569426v1.37
  article-title: Texture image analysis and texture classification methods-a review
  publication-title: arXiv preprint
– year: 2021
  ident: 2023.11.30.569426v1.34
  publication-title: Oiver a Durham
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: 2023.11.30.569426v1.52
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 18
  start-page: e1009877
  year: 2022
  ident: 2023.11.30.569426v1.18
  article-title: Global dynamics of microbial communities emerge from local interaction rules
  publication-title: PLoS computational biology
– volume: 18
  start-page: e1009797
  year: 2022
  ident: 2023.11.30.569426v1.23
  article-title: Delta 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics
  publication-title: PLOS Comput. Biol
– year: 2022
  ident: 2023.11.30.569426v1.33
– volume: 115
  start-page: 80
  year: 2017
  end-page: 90
  ident: 2023.11.30.569426v1.15
  article-title: Trackmate: An open and extensible platform for single-particle tracking
  publication-title: Methods
– volume: 79
  start-page: 93
  year: 2017
  end-page: 117
  ident: 2023.11.30.569426v1.1
  article-title: A critical and comparative review of fluorescent tools for live-cell imaging
  publication-title: Annu. review physiology
– year: 2017
  ident: 2023.11.30.569426v1.35
– volume: 16
  start-page: 911679
  year: 2022
  ident: 2023.11.30.569426v1.38
  article-title: Half-unet: A simplified u-net architecture for medical image segmentation
  publication-title: Front. Neuroinformatics
– volume: 102
  start-page: 690
  year: 2016
  end-page: 700
  ident: 2023.11.30.569426v1.21
  article-title: Supersegger: robust image segmentation, analysis and lineage tracking of bacterial cells
  publication-title: Mol. microbiology
– volume: 65
  start-page: 101759
  year: 2020
  ident: 2023.11.30.569426v1.46
  article-title: Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis
  publication-title: Med. image analysis
– start-page: 201
  year: 2005
  end-page: 243
  ident: 2023.11.30.569426v1.48
  article-title: Deconvolution microscopy
  publication-title: Microsc. Tech. -/-
– volume: 431
  start-page: 4569
  year: 2019
  end-page: 4588
  ident: 2023.11.30.569426v1.10
  article-title: Analyzing microbial population heterogeneity—expanding the toolbox of microfluidic single-cell cultivations
  publication-title: J. molecular biology
– volume: 99
  start-page: 767
  year: 2016
  end-page: 777
  ident: 2023.11.30.569426v1.28
  article-title: Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis
  publication-title: Mol. microbiology
– volume: 7
  start-page: 383
  year: 2009
  end-page: 392
  ident: 2023.11.30.569426v1.2
  article-title: Using movies to analyse gene circuit dynamics in single cells
  publication-title: Nat. Rev. Microbiol
– volume: 11
  start-page: 36
  year: 2004
  end-page: 42
  ident: 2023.11.30.569426v1.42
  article-title: Image processing with imagej
  publication-title: Biophotonics international
– volume: 45
  start-page: fuaa062
  year: 2021
  ident: 2023.11.30.569426v1.11
  article-title: Advances and opportunities in image analysis of bacterial cells and communities
  publication-title: FEMS Microbiol. Rev
– volume: 10
  start-page: e0144959
  year: 2015
  ident: 2023.11.30.569426v1.45
  article-title: Cell tracking accuracy measurement based on comparison of acyclic oriented graphs
  publication-title: PloS one
– volume: 114
  start-page: 4549
  year: 2017
  end-page: 4554
  ident: 2023.11.30.569426v1.6
  article-title: Live imaging of root–bacteria interactions in a microfluidics setup
  publication-title: Proc. Natl. Acad. Sci
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: 2023.11.30.569426v1.49
  article-title: Deep learning
  publication-title: nature
– year: 2016
  ident: 2023.11.30.569426v1.53
  publication-title: Deep learning
– volume: 16
  start-page: e1007673
  year: 2020
  ident: 2023.11.30.569426v1.22
  article-title: Delta: Automated cell segmentation, tracking, and lineage reconstruction using deep learning
  publication-title: PLoS computational biology
– volume: 12
  start-page: 1487
  year: 2012
  end-page: 1494
  ident: 2023.11.30.569426v1.3
  article-title: The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities
  publication-title: Lab on a Chip
– volume: 15
  start-page: 1102
  year: 2019
  end-page: 1109
  ident: 2023.11.30.569426v1.7
  article-title: Long-range temporal coordination of gene expression in synthetic microbial consortia
  publication-title: Nat. chemical biology
– volume: 349
  start-page: 986
  year: 2015
  end-page: 989
  ident: 2023.11.30.569426v1.5
  article-title: Emergent genetic oscillations in a synthetic microbial consortium
  publication-title: Science
– volume: 18
  start-page: 100
  year: 2021
  end-page: 106
  ident: 2023.11.30.569426v1.41
  article-title: Cellpose: a generalist algorithm for cellular segmentation
  publication-title: Nat. methods
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: 2023.11.30.569426v1.50
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. image analysis
– year: 2021
  ident: 2023.11.30.569426v1.24
  article-title: Tracking bacteria at high density with fast, the feature-assisted segmenter/tracker
  publication-title: bioRxiv
– volume: 16
  start-page: 1226
  year: 2019
  end-page: 1232
  ident: 2023.11.30.569426v1.43
  article-title: Ilastik: interactive machine learning for (bio) image analysis
  publication-title: Nat. Methods
– volume: 37
  start-page: 3992
  year: 2021
  end-page: 3994
  ident: 2023.11.30.569426v1.31
  article-title: Cellprofiler analyst 3.0: accessible data exploration and machine learning for image analysis
  publication-title: Bioinformatics
– volume: 12
  start-page: 1600323
  year: 2017
  ident: 2023.11.30.569426v1.27
  article-title: Cellshape: A user-friendly image analysis tool for quantitative visualization of bacterial cell factories inside
  publication-title: Biotechnol. J
– volume: 101
  start-page: 14
  year: 2013
  end-page: 22
  ident: 2023.11.30.569426v1.25
  article-title: Using cellx to quantify intracellular events
  publication-title: Curr. protocols molecular biology
– volume: 28
  start-page: 633
  year: 2020
  end-page: 643
  ident: 2023.11.30.569426v1.8
  article-title: Synthetic biology for manipulating quorum sensing in microbial consortia
  publication-title: Trends microbiology
– volume: 16
  start-page: 67
  year: 2019
  end-page: 70
  ident: 2023.11.30.569426v1.40
  article-title: U-net: deep learning for cell counting, detection, and morphometry
  publication-title: Nat. methods
– volume: 114
  start-page: 140
  year: 2020
  end-page: 150
  ident: 2023.11.30.569426v1.16
  article-title: Bacstalk: a comprehensive and interactive image analysis software tool for bacterial cell biology
  publication-title: Mol. microbiology
– volume: 16
  start-page: e2005970
  year: 2018
  ident: 2023.11.30.569426v1.20
  article-title: Cellprofiler 3.0: Next-generation image processing for biology
  publication-title: PLoS biology
– volume: 11
  start-page: 1
  year: 2020
  end-page: 15
  ident: 2023.11.30.569426v1.9
  article-title: Investigating the dynamics of microbial consortia in spatially structured environments
  publication-title: Nat. communications
– volume: 10
  start-page: 623
  year: 2020
  ident: 2023.11.30.569426v1.47
  article-title: Noise reduction in ct images using a selective mean filter
  publication-title: J. biomedical physics & engineering
– volume: 113
  start-page: 297
  year: 2020
  end-page: 308
  ident: 2023.11.30.569426v1.26
  article-title: Bactmap: An r package for integrating, analyzing and visualizing bacterial microscopy data
  publication-title: Mol. microbiology
– volume: 9
  start-page: 1
  year: 2018
  end-page: 16
  ident: 2023.11.30.569426v1.14
  article-title: Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software
  publication-title: Nat. communications
– volume: 7
  start-page: 1
  year: 2006
  end-page: 11
  ident: 2023.11.30.569426v1.19
  article-title: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome biology
– year: 2003
  ident: 2023.11.30.569426v1.17
– year: 2019
  ident: 2023.11.30.569426v1.51
  publication-title: Deep learning
– volume: 374
  start-page: 20190080
  year: 2019
  ident: 2023.11.30.569426v1.44
  article-title: Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations
  publication-title: Philos. Transactions Royal Soc. B
– volume: 9
  start-page: 1
  year: 2019
  end-page: 12
  ident: 2023.11.30.569426v1.13
  article-title: Mmhelper: An automated framework for the analysis of microscopy images acquired with the mother machine
  publication-title: Sci. reports
– volume: 12
  start-page: 1
  year: 2014
  end-page: 14
  ident: 2023.11.30.569426v1.4
  article-title: Nutrient-responsive regulation determines biodiversity in a colicin-mediated bacterial community
  publication-title: BMC biology
– volume: 11
  start-page: 1
  year: 2017
  end-page: 21
  ident: 2023.11.30.569426v1.29
  article-title: Image analysis driven single-cell analytics for systems microbiology
  publication-title: BMC systems biology
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: 2023.11.30.569426v1.54
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural networks
– year: 2021
  ident: 2023.11.30.569426v1.36
  article-title: Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation
  publication-title: bioRxiv
– start-page: 810036
  year: 2019
  ident: 2023.11.30.569426v1.12
  article-title: Mother machine image analysis with mm3
  publication-title: bioRxiv
– start-page: 231
  year: 2022
  end-page: 257
  ident: 2023.11.30.569426v1.30
  publication-title: Quantitative analysis of microscopy data to evaluate bacterial responses to antibiotic treatment in Antibiotics: Methods and Protocols
– volume: 19
  start-page: 1438
  year: 2022
  end-page: 1448
  ident: 2023.11.30.569426v1.32
  article-title: Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation
  publication-title: Nat. methods
SSID ssj0002961374
Score 1.7092696
SecondaryResourceType preprint
Snippet Time-lapse microscopy offers a powerful approach for analysing cellular activity. In particular, this technique is valuable for assessing the behaviour of...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Image processing
Microbiology
Population dynamics
Software
Software packages
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60peDNJ1arrOA1Nbt5NDmJSksRLEUs9BYyuxsstk1MqtZ_70yS1oPgLSQkkNndb97zMXat4lB5CRC5i5dYrhSOBT2ILQkipj5M5ZXtYk8jfzhxH6fetA64FXVZ5QYTS6DWqaIY-Q06Bj4Z22Fwm71bxBpF2dWaQmOXNRGCA6_Bmvf90fh5G2WRIaqrchSz9EM8-tL26tQmbkVy_B286jp21_NDlwYstGCW5uvZ5x9oLvXNYJ81x3Fm8gO2Y5aHrFURRn4fsfUdB9xWrwsqqtFcbUkEeZrwAhH1K84NRzf4DWGi4GiQciKPt-ZxVhg-W-BdnlWtAaiy6CX8LXRu0e7mUM1tjuc825J6cV0R1hfHbDLovzwMrZo7wQLK2lom0T0dKB_Qn0ATKxDG9ALKgQoldegIZZTxXbB9nSgh7QRhLnBBBlrRyMFYOiessUyX5pRxBwDVGwQ0KMcFIwASDwRIAyGEiBFtdlULLcqqCRkRCRZ9i8ixo0qwbdbZiDOqD0kR_S7p2f-Pz9kefbGsInE6rLHKP8wF2gIruKwX_AcqN7Or
  priority: 102
  providerName: ProQuest
Title A benchmarked comparison of software packages for time-lapse image processing of monolayer bacterial population dynamics
URI https://www.proquest.com/docview/2896606698
https://www.biorxiv.org/content/10.1101/2023.11.30.569426
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfDmEx-1rOA1Jbub51GlpQiWIhZ6CzubDRb7CEnV-u-dSWIR9OAtLOwGJrvzzZeZnY-xG6Nj42dA4i5-5nhSKAdC0I4EoekepvGr62KPo2A48R6m_vSH1BeVVcJsVWxm71Uenwq20fvWh9sVxNUVPvWU2_ODGOFll7WpxxlVcw2mve3vFRkjToVek8f8cyZGvM2bfvnhClwGB6w91rktDtmOXR6xvVod8vOYbW454B56WVAFTcrNVjGQrzJeovv80IXlyHlf0SeUHKNPTkrxzlznpeWzBY7yvL4HgPhEk3DLIZPFIJtD3aRZz3m-VfDiaa1OX56wyaD_fD90GqEEByhF69gsDdPIBIDkAeOpSFgbRpTwFEamsRLGGht44AZpZoR0M_RpkQcySg31F9RSnbLWcrW0Z4wrAMQyiKgrjgdWAGQ-CJAWYojRIZyz68ZoSV63w0jIsEgkEuUmtWHPWefbnElzIsoEiV1AZCmOLv6xxCXbp7GqbkR1WGtdvNkrRP81dFn7rj8aP3Wr7_0FoBWtvA
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF7EInrziW9X0GNqsnk0exDxSX20FKngLe5sNli0bWyqtX_K3-hMktaD4M1bSEgOk9lvZnZ2vo-xA62k9hMgcRc_sTzhuBbUQFkCHEVzmNrPx8UazaD-4N08-o8z7GsyC0PHKieYmAN13Ne0R36EhUFAybYMT9I3i1SjqLs6kdAo3OLWjEdYsmXH1xf4fw-FuLpsn9etUlXAAupnWiaJa3GoA8BMG5OP0DGmFlJ30NEilq6jjTaBB3YQJ9oRdoIAEHogwlgTGZ8iogOE_AqmGRJXUeXsstm6n-7qCInhMad-FoFEqBG2X7ZS0fVpo8HFq6prV_1AekToMAed_uCz8_ErFOTx7WqRVVoqNYMlNmN6y2yuEKgcr7DPUw7oxs9dOsQTcz0VLeT9hGeI4CM1MBzL7heEpYxjAsxJrN56VWlmeKeLd3lajCJgiKSX0IxYTGOez6HgiVavPJ2KiPF43FPdjs5W2cO_WHWNzfb6PbPOuAuA4RRCIubxwDgAiQ8OCAMSJGLSBtsvjRalBSNHRIbFWiZy7agw7AbbnpgzKhdlFv240Obfj_fYfL3duIvurpu3W2yBvp6fYHG32exw8G52MA8Zwm758zl7-m9_-wZdM_CI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfHmE6tVV_CakN28j6IWn6UHC72Fnc0Gi32EpGr9984ksQh68BY2ZBcmuzPz7Tw-xi60irWfAZG7-JnlSeFaEIKyJAhFdZjar8rFnvrB7dC7H_mjH7UwlFYJ43mxHL9XcXxK2EbtWx9uRxBWd_HJdh3bD2I0LzZdU9t5mq2zNjU7IwDWG9mrexYZo8EKvSag-ecU6Po2S_5SyJWV6W2z9kDlpthha2a2yzZqmsjPPba85ICb6WVKqTQp1yvqQD7PeIl69EMVhiP4fUXlUHJ0QzlRxlsTlZeGj6c4yvO6IAANFX2Eew8hLXrbHOpuzWrC8xWVF09rmvpynw17N89Xt1bDmGABxWotk6VhGukAEEWgYxUJY8KIIp9CyzR2hTbaBB44QZppIZ0MlVvkgYxSTY0GlXQPWGs2n5lDxl0ANGoQUXscD4wAyHwQIA3EEKNm6LDzRmhJXvfFSEiwiCgS10lqwXZY91ucSXM0ygQRXkCoKY6O_jHFGdscXPeSx7v-wzHbotdVLonbZa1F8WZO0CNYwGn1y78AesOyAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+benchmarked+comparison+of+software+packages+for+time-lapse+image+processing+of+monolayer+bacterial+population+dynamics&rft.jtitle=bioRxiv&rft.au=Ahmadi%2C+Atiyeh&rft.au=Courtney%2C+Matthew&rft.au=Ren%2C+Carolyn&rft.au=Ingalls%2C+Brian&rft.date=2023-12-03&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.11.30.569426&rft.externalDocID=2023.11.30.569426v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon